Identifying cryptic speciation across groundwater populations: first COI sequences of Bathynellidae (Crustacea, Syncarida)

Authors

  • A. I. Camacho Museo Nacional de Ciencias Naturales (CSIC), Department of Biodiversity and Evolutionary Biology, Madrid
  • B. A. Dorda Museo Nacional de Ciencias Naturales (CSIC), Department of Collections, Tissues and DNA Collection, Madrid,
  • I. Rey Museo Nacional de Ciencias Naturales (CSIC), Department of Collections, Tissues and DNA Collection, Madrid,

DOI:

https://doi.org/10.3989/graellsia.2011.v67.031

Keywords:

groundwater fauna, COI, cryptic species, Bathynellacea, Spain

Abstract


The biodiversity of groundwater fauna remains poorly known and understood. Groundwater biodiversity studies are strongly affected by habitat inaccessibility and taxonomic crisis. The objective of this work was to investigate levels of genetic divergence across populations of Bathynellacea, a small crustacean group that lives exclusively in groundwater, in order to evaluate the extent of cryptic speciation in morphologically constrained clades. Partial sequences of cytochrome oxidase I (COI) have been obtained, for the first time in Bathynellidae. Specimens analyzed of the genus Vejdovskybathynella were obtained from six populations morphologically assignable to a single species; all of them are located in different areas of one of the largest karst systems (110 km of galleries topographied) known in Spain. The analyses of molecular data demonstrate the presence of three highly divergent genetic units, possibly corresponding to undescribed new species. The results of this study provide the first molecular data that complement morphological knowledge in order to address phylogenetic studies to try to resolve the relations between genera and species of the Bathynellidae family. We conclude that the evolutionary scenario of this special group of subterranean crustaceans cannot be revealed only by using morphological information due to the presence of very old lineages of cryptic species, as has been brought to light with the molecular data obtained here.

Downloads

Download data is not yet available.

References

Burns, J. M., Janzen, D. H., Hajibabaei, M., Hallwachs, W. & Hebert, P. D. N., 2007. DNA barcodes of closely related (but morphologically and ecologically distinct) species of skipper butterflies (Hesperiidae) can differ by only one to three nucleotides. Journal of the Lepidopterists Society, 61: 138-153.

Camacho, A. I., 1992. Sampling the subterranean biota. Cave (aquatic environment). In: A. I. Camacho (ed.), The Natural History of Biospeology. Monografías del Museo Nacional de Ciencias Naturales, 7. Madrid: 135-168.

Camacho, A. I., Torres, T., Puch, C. J., Ortiz, J. E. & Valdecasas, A. G., 2006. Small-scale biogeographical patterns in some groundwater Crustacea, the syncarid, Parabathynellidae. Biodiversity and conservation, 15(11): 3527-3541. http://dx.doi.org/10.1007/s10531-004-1872-8

Costa, F. O., de Waard, J. R., Boutillier, J., Ratnasingham, S., Dooh, R. T., Hajibabaei, M. & Hebert, P. D. N., 2007. Biological identifications through barcodes: the case of the Crustacea. Canadian Journal of Fisheries and Aquatic Sciences, 64: 272-295. http://dx.doi.org/10.1139/f07-008

Finston, T. L. & Johnson, M. S., 2004. Geographic patterns of genetic diversity in subterranean amphipods of the Pilbara, Western Australia. Marine and Freshwater Research, 55: 619-628. http://dx.doi.org/10.1071/MF04033

Finston, T. L., Johnson, M. S., Humphreys, W. F., Eberhard, S. M. & Halse, S. A., 2007. Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Molecular Ecology, 16: 355-365. http://dx.doi.org/10.1111/j.1365-294X.2006.03123.x PMid:17217350

Foley, D. H., Wilkerson, R. C., Cooper, R. D., Volovsek, M. E. & Bryan, J. H., 2007. A molecular phylogeny of Anopheles annulipes (Diptera: Culicidae) sensu lato: the most species-rich anopheline complex. Molecular Phylogenetics and Evolution, 43: 283-297. http://dx.doi.org/10.1016/j.ympev.2006.10.008 PMid:17126567

Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenoek, R., 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3: 294-299. PMid:7881515

Guzik, M. T., Abrams, K. M., Cooper, S. J. B., Humphreys, W. F., Cho, J.-L. & Austin, A., 2008. Phylogeography of the ancient Parabathynellidae (Crustacea, Bathynellacea) from the Yilgara region of Western Australia. Invertebrate Systematics, 22(2): 205-216. http://dx.doi.org/10.1071/IS07040

Hajibabaei, M., Janzen, D. H., Burns, J. M., Hallwachs, W. & Herbert, P. D. N., 2006. DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Science of the United States of America, 103: 968-971. http://dx.doi.org/10.1073/pnas.0510466103 PMid:16418261    PMCid:1327734

Hebert, P. D., Cywinska, A., Ball, S. L. & deWaard, J. R., 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London, B 270: 313-321. http://dx.doi.org/10.1098/rspb.2002.2218 PMid:12614582    PMCid:1691236

Jarman, S. N. & Elliot, N. G., 2000. DNA evidence for morphological and cryptic Cenozoic speciations in the Anaspididae, “living fossils” from the Triassic. Journal of Evolutionary Biology, 13: 624-633. http://dx.doi.org/10.1046/j.1420-9101.2000.00207.x

Jones, R., Culver, D. C. & Kane, T. C., 1992. Are parallel morphologies of cave organisms the result of similar selection pressures? Evolution, 46: 353-365. http://dx.doi.org/10.2307/2409856

Kane, T. C., Culver, D. C. & Mathieu, J., 1994. Biotic fluxes and gene flow. In: J. Gibert, D. L. Danielopol & J. Stanford (eds). Groundwater ecology. Academic Press: New York: 245-259.

Lanave, C., 1984. A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution, 20: 86-93. http://dx.doi.org/10.1007/BF02101990 PMid:6429346

Lefébure, T., Douady, C. J., Gouy, M., Trontelj, P., Briolay, J. & Gibert, J., 2006. Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Molecular Ecology, 15: 1797-1806. http://dx.doi.org/10.1111/j.1365-294X.2006.02888.x PMid:16689899

Lefébure, T., Douady, C. J., Malard, F. & Gibert, J., 2007. Testing vicariance and cryptic diversity in a widely distributed groundwater amphipod (Niphargus rhenorhodanensis). Molecular Phylogenetics and Evolution, 42: 676-686. http://dx.doi.org/10.1016/j.ympev.2006.08.020 PMid:17049283

Meyer, C. P. & Paulay, G., 2005. DNA barcoding: error rates based on comprehensive sampling. PLoS Biology, 3: e422. http://dx.doi.org/10.1371/journal.pbio.0030422 PMid:16336051    PMCid:1287506

Meier, R., Zhang, G. & Ali, F., 2008. The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Systematic Biology, 57: 809-813. http://dx.doi.org/10.1080/10635150802406343 PMid:18853366

Moritz, C. & Cicero, C., 2004. DNA barcoding: promise and pitfalls. PLoS Biology, 2: e354. http://dx.doi.org/10.1371/journal.pbio.0020354 PMid:15486587    PMCid:519004

Proudlove, G. & Wood, P. J., 2003. The blind leading the blind: cryptic subterranean species and DNA taxonomy. Trends in Ecology and Evolution, 18: 272-273. http://dx.doi.org/10.1016/S0169-5347(03)00095-8

Trontelj, P., Douad, J. C., Fisher, C., Gibert, J., Goricki, S., Lefébure, T., Sket, B. & Zaksek, V., 2009. Amolecular test for cryptic diversity in ground water: how large are the ranges of macrostygobionts? Freshwater Biology, 54: 727-744. http://dx.doi.org/10.1111/j.1365-2427.2007.01877.x

Schminke, H. K., 1981. Adaptations of Bathynellacea (Crustacea, Syncarida) to life in the interstitial (“Zoea theory”). Internationale Revue der gesamten Hydrobiologie und Hydrographie, 66: 578-637.

Simon, C. l., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P., 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved PCR primers. Annals of the Entomological Society of America, 87: 51-701

Swofford, D. L., 2002. PAUP*: Phylogeny Analysis Using Parsimony (*and other methods), version 4.0b9. Sinauer Associates Inc., Sunderland, Massachusetts.

Walsh, P., Metzger, D. & Higuchi, R.,1991. Chelex 100 as a medium for simple extraction of DNA for PCRbased typing from forensic material. Biotechniques, 10: 506-513. PMid:1867860

Westheide, W., 1987. Progenesis as a principle in meiofauna evolution. Journal of Natural History, 21: 843-854. http://dx.doi.org/10.1080/00222938700770501

Downloads

Published

2011-06-30

How to Cite

1.
Camacho AI, Dorda BA, Rey I. Identifying cryptic speciation across groundwater populations: first COI sequences of Bathynellidae (Crustacea, Syncarida). Graellsia [Internet]. 2011Jun.30 [cited 2024Jul.22];67(1):7-12. Available from: https://graellsia.revistas.csic.es/index.php/graellsia/article/view/186

Issue

Section

Research Articles

Most read articles by the same author(s)