Un método para establecer la viabilidad de las poblaciones de la araña trampera Amblyocarenum en áreas urbanas: un estudio piloto

Autores/as

DOI:

https://doi.org/10.3989/graellsia.2022.v78.329

Palabras clave:

Urbanización, arañas migalomorfas, indicador ecológico, uso del suelo, La Safor

Resumen


Amblyocarenum walckenaeri (Lucas, 1846) (Araneae: Mygalomorphae: Nemesiidae) se encuentra en varias zonas urbanas de La Safor (Valencia, España). Aquí, presentamos un método que podría exponer el efecto perturbador de la rápida expansión urbana en poblaciones de arañas tramperas: contando las clases de edades de una población como indicador de su viabilidad. Nuestros resultados muestran que la mayoría de las poblaciones urbanas muestreadas no presenta crías. Esto sugiere que Amblyocarenum existe en dichas zonas urbanas como remanentes; poblaciones envejecidas que presentan dificultad a la hora de reclutar nuevas generaciones de ejemplares, tornándose inviables.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Branco, V. V., Morano, E. & Cardoso, P. 2019. An update to the Iberian spider checklist (Araneae). Zootaxa, 4614(2): 201-254. https://doi.org/10.11646/zootaxa.4614.2.1 PMid:31716377

Bond, J. E., Hedin, M. C., Ramirez, M. G. & Opell, B. D. 2001. Deep molecular divergence in the absence of morphological and ecological change in the californian coastal dune endemic trapdoor spider Aptostichus simus. Molecular Ecology, 10(4): 899-910. https://doi.org/10.1046/j.1365-294X.2001.01233.x PMid:11348499

Buchli, H. H. R. 1966. Notes sur la mygale terricole Amblyocarenum simile (Ausserer 1871) (Arach., Araneae). Senckenbergiana Biologica, 47: 11-‍22

Candolin, U. & Heuschele, J. 2008. Is sexual selection beneficial during adaptation to environmental change? Trends in ecology & evolution, 23(8), 446-452. https://doi.org/10.1016/j.tree.2008.04.008 PMid:18582989

Czech, B., Krausman, P. R. & Devers, P. K. 2000. Economic associations among causes of species endangerment in the United States: associations among causes of species endangerment in the United States reflect the integration of economic sectors, supporting the theory and evidence that economic growth proceeds at the competitive exclusion of nonhuman species in the aggregate. BioScience, 50(7): 593-601. https://doi.org/10.1641/0006-3568(2000)050[0593:EAACOS]2.0.CO;2

Decae, A., Colombo, M. & Manunza, B. 2014. Species diversity in the supposedly monotypic genus Amblyocarenum Simon, 1892, with the description of a new species from Sardinia (Araneae, Mygalomorphae, Cyrtaucheniidae). Arachnology, 16(6): 228-240. https://doi.org/10.13156/arac.2014.16.6.228

Deshmukh, U. S. & Chaudhari, P. W. 2016. Study of spider fauna from citric agro ecosystem in the catchment area of upper Wardha dam, Amravati, Maharashtra, India. International Journal of Fauna and Biological Studies, 3(5): 120-‍123

Ditchkoff, S. S., Saalfeld, S. T. & Gibson, C. J. 2006. Animal behavior in urban ecosystems: modifications due to human-induced stress. Urban ecosystems, 9(1): 5-12. https://doi.org/10.1007/s11252-006-3262-3

Ferretti, N. E., Soresi, D. S., González, A. & Arnedo, M. 2019. An integrative approach unveils speciation within the threatened spider Calathotarsus simoni (Araneae: Mygalomorphae: Migidae). Systematics and Biodiversity, 17(5): 439-457. https://doi.org/10.1080/14772000.2019.1643423

Gama, Z. P. 2017. Arthropod diversity in conventional Citrus orchard at Selorejo village, East Java. In: Hong, S.-K. & Nakagoshi, N. (eds.). Landscape Ecology for Sustainable Society. Springer, Cham: 231-248. https://doi.org/10.1007/978-3-319-74328-8_14

Gehan, E. A. 1965. A generalized Wilcoxon test for comparing arbitrarily singly-censored samples. Biometrika, 52(1-2): 203-224. https://doi.org/10.1093/biomet/52.1-2.203 PMid:14341275

Gering, J. C. & Blair, R. B. 1999. Predation on artificial bird nests along an urban gradient: predatory risk or relaxation in urban environments? Ecography, 22(5): 532-541. https://doi.org/10.1111/j.1600-0587.1999.tb01283.x

Gómez-Pina, G., Muñoz-Pérez, J. J., Ramírez, J. L. & Ley, C. 2002. Sand dune management problems and techniques, Spain. Journal of Coastal Research, (36): 325-332. https://doi.org/10.2112/1551-5036-36.sp1.325

González, S., Vercher, R., Domínguez, A. & Mañó, P. 2008. Biodiversity and distribution of beneficial arthropods within hedgerows of organic Citrus orchards in Valencia (Spain). In: García-Marí, F. (ed.). International Conference on Integrated Control in Citrus Fruit Crops. IOBC/wprs Bulletin, 38: 275-‍279. IOBC/wprs.

Hamilton, C. A., Formanowicz, D. R. & Bond, J. E. 2011. Species delimitation and phylogeography of Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): Cryptic diversity in North American tarantulas. PLoS ONE, 6(10): 12-16. https://doi.org/10.1371/journal.pone.0026207 PMid:22022570 PMCid:PMC3192178

Iglesias Carrasco, M. 2017. Anthropic habitats as novel environments: consequences for evolution and conservation. Ph.D. Thesis. University of the Basque Country. 196 pp.

Instituto Nacional de Estadística, 2021. Estudio de movilidad de la población a partir de datos de telefonía móvil (EM-4) julio y agosto de 2021. Available from https://www.ine.es/index.htm [accessed 31 Jan. 2022].

Lopes, R. H., Reid, I. D. & Hobson, P. R. 2007. The two-dimensional Kolmogorov-Smirnov test. Proceedings of Science, XI International Workshop on Advanced Computing and Analysis Techniques in Physics Research, April 23-‍27 2007, Amsterdam, the Netherlands. Available from http://bura.brunel.ac.uk/handle/2438/1166 [accessed 31 Jan. 2022].

Mason, L. D., Wardell-Johnson, G. & Main, B. Y. 2016. Quality not quantity: conserving species of low mobility and dispersal capacity in south-western Australian urban remnants. Pacific Conservation Biology, 22(1): 37-47. https://doi.org/10.1071/PC15044

Michael, G., Ong'amo, G. O., Nderitu, J., Watson, G. W. & Kinuthia, W. 2021. Diversity of scale insects (Hemiptera: Coccomorpha) attacking citrus trees in Machakos, Makueni, Kilifi and Kwale Counties, Kenya. Journal of Agricultural Science and Practice 6: 79-‍85. https://doi.org/10.31248/JASP2021.275

Miralles i Garcia, J., Díaz Aguirre, S. & Altur Grau, V. 2012. Environmental impact on the Mediterranean Spanish coast produced by the latest process of urban developments. WIT Transactions on Ecology and the Environment, 155: 379-389. https://doi.org/10.2495/SC120321

Nentwig, W., Blick, T., Gloor, D., Hänggi, A. & Kropf, C. 2021. Spiders of Europe. Version 01.2022. Available from https://araneae.nmbe.ch/ [accessed 31 Jan. 2022].

Pérez-Miles, F. & Perafán, C. 2017. Behavior and biology of Mygalomorphae. In: Viera, C. & Gonzaga, M. (eds). Behaviour and Ecology of Spiders. Springer, Cham: 29-54. https://doi.org/10.1007/978-3-319-65717-2_2

RStudio Team 2020. RStudio: Integrated Development for R. RStudio, PBC, Boston. Available from http://www.rstudio.com/ [accessed 31 Jan. 2022].

Tamajón Gómez, R., Pertegal Pérez, C. & Rodríguez Castilla, G. 2018. Primeros registros de Amblyocarenum walckenaeri Lucas, 1846 (Araneae: Cyrtaucheniidae) de Sierra Morena (España). Revista ibérica de aracnología, 33: 107-‍109.

Thomas, C. D. 2000. Dispersal and extinction in fragmented landscapes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1439): 139-145. https://doi.org/10.1098/rspb.2000.0978 PMid:10687818 PMCid:PMC1690516

World Spider Catalog. 2021. Version 21.0. Natural History Museum, Bern. Available from http://wsc.nmbe.ch [accessed 31 Jan. 2022].

Publicado

2022-03-16

Cómo citar

1.
Calatayud-Mascarell A, Migueles-Miralles L. Un método para establecer la viabilidad de las poblaciones de la araña trampera Amblyocarenum en áreas urbanas: un estudio piloto. Graellsia [Internet]. 16 de marzo de 2022 [citado 23 de abril de 2024];78(1):e160. Disponible en: https://graellsia.revistas.csic.es/index.php/graellsia/article/view/683

Número

Sección

Artículos