Abstract

Two new species, Squalius gaditanus sp. nov. and Squalius tartessicus sp. nov. are described on the basis of morphological and genetic traits. Squalius gaditanus is restricted to the Barbate, Jara and Miel drainages in the province of Cádiz (Southern Spain). Squalius gaditanus sp. nov. can be distinguished from other Squalius species from the Iberian Peninsula through a combination of morphometric, meristic and genetic characters: 36-‍40 (=38) pored scales on the lateral line; 6-‍7 (=6.7) scales above the lateral line; 2-‍3 (=2.8) scales below the lateral line; vertebrae 37-‍39 (=38); second infraorbital bone narrower than the third in adults; maxilla with reduced pointed anterior process; posterior process of the maxilla long and thin; lower branch of the pharyngeal bone short and robust; pharyngeal plate of basioccipital rounded and two autapomorphies in the mitochondrial cytochrome b gene. Squalius tartessicus sp. nov. inhabits the Almargem, Gilão, Odiel, Guadiana, Guadalquivir, Guadalete, Guadalhorce, Velez, Guadalfeo and Segura drainages in the southern part of the Iberian Peninsula. Squalius tartessicus sp. nov. can be differentiated from other Squalius species from the Iberian Peninsula through a set of morphometric, meristic and genetictraits: 37-‍41(=38.8) pored scales on the lateral line; 6-‍7 (=7) scales above the lateral line; 2-‍3 (=2.9) scales below the lateral line; 37-‍39 (=38) number of vertebrae; infraorbital bones unusually wide in adults; maxilla with discernable pointed anterior process; posterior process of the maxilla long and thin; lower branch of the pharyngeal bone short and robust; pharyngeal plate of basioccipital triangular in shape; posterior lamina of cleithrum expanding posteriorly.

urn:lsid:zoobank.org:pub:04106DD8-4B8C-4659-9B87-C709685BFDA6

Keywords: Taxonomy; Iberian Peninsula; Squalius; Cypriniformes; Leuciscidae; genetics; morphology.

Resumen

Descripción de dos especies nuevas del género Squalius Bonaparte, 1837 (Actinopterygii, Leuciscidae) en la Península Ibérica

Se describen dos nuevas especies, Squalius gaditanus sp. nov. y Squalius tartessicus sp. nov. sobre la base de caracteres morfológicos y genéticos. Squalius gaditanus está restringida a las cuencas de Barbate, Jara y Miel en la provincia de Cádiz (sur de España). Squalius gaditanus sp. nov. se puede distinguir de otras especies del género Squalius, de la Península Ibérica, a través de una combinación de caracteres morfométricos, merísticos y genéticos: 36-‍40 (=38) escamas canaliculadas en la línea lateral; 6-‍7 (=6.7) escamas por encima de la línea lateral; 2-‍3 (=2,8) escamas debajo de la línea lateral; vértebras 37-‍39 (=38); en los ejemplares adultos el segundo infraorbitario es más estrecho que el tercero; maxilar con su proceso anterior poco puntiagudo; proceso posterior del maxilar largo y delgado; la rama inferior del hueso faríngeo es corta y robusta; placa faríngea del basioccipital redondeada y dos autapomorfias en el gen mitocondrial citocromo b. Squalius tartessicus sp. nov. vive en las cuencas de los ríos Almargem, Gilao, Odiel, Guadiana, Guadalquivir, Guadalete, Guadalhorce, Vélez, Guadalfeo y Segura en el sur de la Península Ibérica. Squalius tartessicus sp. nov. se puede distinguir de otras especies del género Squalius, de la Península Ibérica,a través de una combinación de caracteres morfométricos, merísticos y genéticos; 37-‍41 (=38.8), escamas canaliculadas en la línea lateral; 6-‍7 (=7) escamas por encima de la línea lateral; 2-‍3 (=2.9) escamas por debajo de la línea lateral; 37-‍39 (=38) número de vértebras; en los adultos infraorbitarios excepcionalmente anchos; maxilar con la apófisis anterior puntiaguda; apófisis posterior del maxilar larga y delgada; la apófisis inferior del hueso faríngeo es corta y robusta; placa faríngea del basioccipital de forma triangular; lámina posterior de cleitro extendida.

Palabras clave: Taxonomía; Península Ibérica; Squalius; Cypriniformes; Leuciscidae; genética; morfología.

Recibido/Received: 19/05/2023; Aceptado/Accepted: 14/11/2023; Publicado en línea/Published online: 14/12/2023

Cómo citar este artículo/Citation: Doadrio, I., Sousa-Santos C. & Perea, S. 2023. Description of two new species of the genus Squalius Bonaparte, 1837 (Actinopterygii, Leuciscidae) in the Iberian Peninsula. Graellsia, 79(2): e205. https://doi.org/10.3989/graellsia.2023.v79.392

Introduction[Up]

The Iberian Peninsula presents an insular freshwater ichthyofauna as a consequence of its hydrological isolation since the formation of the unsurmountable barrier represented by the Pyrenees during the Oligocene and the opening of the Strait of Gibraltar in the Miocene 5.33 million years ago (‍Krijgsmann et al., 2018). This is especially noticeable for primary freshwater fish families, such as: Nemacheilidae, Cobitidae, Leuciscidae and Cyprinidae. That is, those fishes whose ancestors entered inland waters much earlier and cannot survive in seawater, being strictly confined to freshwater systems (‍Myers, 1938; ‍Darlington, 1948).

The insularity of the Iberian freshwater ichthyofauna is manifested in its faunistic composition with few genera, due to the difficulty of colonizing the Peninsula by different lineages and by a high number of endemic species as a consequence of the several hydrological reorganizations that have occurred since the Oligocene within the Iberian Peninsula (‍Perea et al., 2016).

The genus Squalius Bonaparte, 1837 is one of the genera with a large number of endemic species in the Iberian Peninsula (‍Doadrio et al., 2011). This genus is currently represented in the Iberian Peninsula by two different lineages, one formed by ancient Mediterranean endemisms and the other by a lineage from Central and East Europe and the northern areas of the Mediterranean basin towards Minor Asia, described as Euroasiatic (‍Sanjur et al., 2003). Divergence between both Euroasiatic and Mediterranean lineages should have occurred in the Late Miocene, approximately 7 Ma (‍Sanjur et al., 2003). The Euroasiatic lineage is represented in Spain by an autochthonous single species, Squalius laietanus Doadrio, Kottelat & Sostoa, 2007, distributed next to the Pyrenees, in the northeast of the Iberian Peninsula and in the southwest of France.

The Mediterranean lineage is much more diverse in the Iberian Peninsula and some species have aroused the interest of evolutionary biologists in recent years. Currently, nine species are recognized, all of them endemic to the peninsula: Squalius alburnoides (Steindachner, 1866), Squalius aradensis (Coelho, Bogutskaya, Rodrigues & Collares-Pereira, 1998), Squalius carolitertii (‍Doadrio, 1988), Squalius castellanus Doadrio, Perea & Alonso, 2007, Squalius malacitanus Doadrio & Carmona, 2006, Squalius palaciosi (Doadrio, 1980), Squalius pyrenaicus (Günther, 1868), Squalius torgalensis (Coelho, Bogutskaya, Rodrigues & Collares-Pereira, 1998) and Squalius valentinus Doadrio & Carmona, 2006. One of these species, S. alburnoides is unique within the European leuciscid fauna due to its hybrid origin, with specimens of different ploidies and reproduction by hybridogenesis (‍Carmona et al., 1997; ‍Cunha et al., 2004, ‍2011).Probably S. palaciosi, of which specimens with different ploidies have also been described, was a species of hybrid origin but seems to have been extirpated since the end of the 20th century (‍Doadrio et al., 2011). The nomenclature of these two hybrid-origin species is controversial, as they result from ancient hybridizations between one species of the Squalius genus and species belonging to different lineages than Squalius. In this context, we follow the latest nomenclature revision of the group (‍Collares-Pereira & Coelho, 2010) to provide nomenclatural stability, but it requires further review.

A genetic study based on nuclear and mitochondrial gene sequences on the populations from southern drainages in Spain found two well different lineages within S. malacitanus (‍Perea et al., 2016). These two lineages, one inhabiting the Atlantic slope and the other the Mediterranean slope, were geographically separated with the reorganization of the Iberian southern drainages which occurred during the opening of the Gibraltar Strait 5.33 Ma (‍Krijgsmann et al., 2018). Only the population from the Miel River, belonging to the Atlantic lineage, drains to the Mediterranean Sea as a consequence of secondary contacts during the Quaternary (‍Perea et al., 2016). Divergence between these two lineages of S. malacitanus occurred in the Mio-Pliocene period around 4.9 Ma (2.1–8.5 Ma) (‍Perea et al., 2016). A posterior work extended the genetic study of the genus Squalius to all populations from the Iberian Peninsula and, by analyzing six nuclear genes, corroborated the existence of these two Atlantic and Mediterranean lineages within S. malacitanus (‍Perea et al., 2020, ‍2021). In addition, populations of S. pyrenaicus were not monophyletic based on nuclear markers and three independent lineages were recognized: a Northern clade distributed throughout the Tajo Drainage and ascribed to the nominal species S. pyrenaicus; a Sado clade inhabiting the Sado drainage in Portugal; and a Southern clade distributed in the remaining Iberian drainages (‍Perea et al. 2021). Genomic data also corroborated the existence of these three independent lineages (‍Mendes et al. 2021). Phylogenetic relationships among Squalius species, based on nuclear genes, have shown that S. pyrenaicus is not monophyletic and the Northern clade is a sister group of S. carolitertii and S. castellanus with respect to one group formed by the Southern clade, the Sado clade, S. valentinus and S. malacitanus (‍Perea et al. 2020, ‍2021). To determine whether the lineages of S. pyrenaicus from the southern Iberian Peninsula and Sado, and the two lineages of S. malacitanus (Atlantic and Mediterranean), could be identified as distinct species, Perea et al. (2020) conducted a Bayesian nuclear multilocus species delimitation analysis following the MSC framework (‍Yang & Rannala, 2010; ‍Yang, 2015). They utilized 4871 base pairs obtained from six nuclear loci plus 1140 base pairs of one mitochondrial locus. The analysis yielded robust support, with a posterior probability of 1.00 for these lineages, endorsing the hypothesis that these lineages should indeed be considered as separate species.

In this paper we present a formal description for the two independent lineages inhabiting Spain: the Southern lineage of S. pyrenaicus and the Atlantic lineage of S. malacitanus.

Material and methods[Up]

Morphology

The morphometric and meristic study of the genus Squalius was based on the analysis of 58 specimens belonging to the Mediterranean lineage of S. malacitanus, 42 specimens from the type locality (Table 1). Ninety-eight specimens of the Squalius population previously assigned to the Atlantic lineage of S. malacitanus (‍Perea et al. 2020, ‍2021). Eighty-one specimens belonging to the Northern lineage of S. pyrenaicus. One hundred twenty-five specimens of the Squalius population previously assigned to the Southern lineage of S. pyrenaicus (‍Perea et al. 2020, ‍2021) (Table 1.).

Holotypes and paratype series of the two new species have been deposited in the Museo Nacional de Ciencias Naturales (MNCN-CSIC, Spain).

Table 1.— Material studied for morphometric analyses. Population Names, Collection Numbers, Sites (River, Drainages, and Coordinates), and Number of Individuals (before slash morphometry, after slash CT-Scan). * Material from the same locality as the holotype and paratypes

Tabla 1.– Material estudiado para el análisis morfométrico. Nombre de las poblaciones, número de colección, lugares de colecta (ríos y cuencas) y número de individuos (antes de la barra morfometría, después de la barra CT-Scan). * Material de la misma localidad que el holotipo y los paratipos.

Species name After Perea et al. (‍2020) Current Study Collection Number Morphometry Collection Number. CT-Scan Drainage River/Nº ind Coordinates
S. malacitanus S. malacitanus
Mediterranean pop
S. malacitanus MNCN_ICTIO 212280-‍311
MNCN_ICTIO 243699-‍703
MNCN_ICTIO AT17800-04
MNCN_ICTIO 212280-‍89 Guadalmina Guadalmina/42*/10 36.517502,
-5.040016
MNCN_ICTIO AT9702-07 Guadalmina Guadaiza/6/- 36.525778,
-4.992991
MNCN_ICTIO 63647-‍56 Guadiaro Hozgarganta/-/10 36.441565,
-5.469525
MNCN_ICTIO AT9487-96 Guadiaro Guadiaro/10/- 36.657761,
-5.283549
S. malacitanus
Atlantic pop
S. gaditanus sp. nov. MNCN_ICTIO 297000-‍23
MNCN_ICTIO 243727-‍55
MNCN_ICTIO 297000-‍09 Jara Jara/53*/10 36.103309,
-5.632100
MNCN_ICTIO 296955-‍99 MNCN_ICTIO 296956-‍65 Jara Vega/45*/10 36.028230,
-5.610120
S. pyrenaicus S. pyrenaicus
Northern pop
S. pyrenaicus MNCN_ICTIO 213943-‍72
MNCN_ICTIO 215791-‍816
MNCN_ICTIO 213943-‍52 Tajo Almonte/56/10 39.647739,
-5.831628
MNCN_ICTIO 196609- 23
MNCN_ICTIO 266495-‍504
MNCN_ICTIO 267007-‍16 Tajo Jerte/25/10 40.227672,
-5.741362
S. pyrenaicus
Southern pop.
S. tartessicus sp. nov. MNCN_ICTIO AT17308-35 Guadalhorce Grande/28/- 36.701739,
-4.881667
MNCN_ICTIO AT17877-92 Vélez Sabar/16/- 36.966244,
-4.259209
MNCN_ICTIO 280674-‍89 Vélez Cuevas/17/- 36.966244,
-4.259209
MNCN_ICTIO 27265-‍310 Guadalquivir Cala/46*/- 37.959673,
-6.222448
MNCN_ICTIO 27225-‍242 MNCN_ICTIO 271254-‍63 Guadalquivir Ciudadeja/18*/10 37.917956,
-5.480368
MNCN_ICTIO 272324-‍33 Guadalete Guadalete/-/10 36.945710,
-5.474864

Twenty-four morphometric measurements (in mm) and eleven meristic variables were recorded from digital photographs using TpsDig ver. 1.4 (‍Rohlf, 2003). The following abbreviations were used for morphometric and meristic characteristics: TL, total length; SL, standard length; PrDD, predorsal distance; PrPD, prepectoral distance; PrVD, preventral distance; PrAD, preanal distance; APL, anal peduncle length; CPL, caudal peduncle length; HL, head length to opercular; PrOL, preorbital length; ED, eye diameter; PsOL, postorbital length; NL, head length to nape; HH, head high; PmxL, premaxilla length; PFL, pectoral fin length; VFL, ventral fin length; DFL, dorsal fin length; DHL, dorsal fin height; AFL, anal fin length; AHL, anal fin height; CFL, caudal fin length; BD, body depth; BLD, body least depth; LLS, lateral line scale rows; SRA, scale rows above lateral line; SRB, scale rows below lateral line; D, dorsal fin rays; A, anal fin rays; P, pectoral fin rays; V, ventral fin rays; C, caudal fin rays; RPT, right pharyngeal teeth; LPT, left pharyngeal teeth; Vr, Vertebrae. After constructing the measurement matrix, Burnaby’s method was used to correct for size effect. The Burnaby method removes the effects of a within population size-factor from between-group morphometric analyses through an orthogonal projection procedure (‍Burnaby, 1966). All analyses were conducted with the corrected matrix.Morphometric and meristic characters were analysed independently. To identify the variables that contributed most to the variation among populations, one principal component analyses (PCA) was performed using the covariance matrix for morphometric characters. Row-wise bootstrapping was carried out to 100.000 replicates and 95% bootstrap confidence intervals are given to the eigenvalues. Statistical analyses were carried out using Past ver. 4.12 (‍Hammer et al., 2001), we used the option scree plot to indicate the number of significant components.

Osteology

Osteological features were investigated through computer tomography (CT) scan and digital dissection using VGStudio MAX ver. 2.2 (Volume Graphics, http://www.volumegraphics.com) of the following localities:

  • Squalius pyrenaicus of the Northern Lineage: MNCN_ICTIO 213943-‍52, 10 specimens from Almonte River, Jaraicejo (Cáceres); MNCN_ICTIO 267007-‍16, 10 specimens from Jerte River, Navaconcejo (Cáceres).

  • Squalius pyrenaicus of the Southern Lineage: MNCN_ICTIO 272254-‍63, 10 specimens from Ciudadeja River, Las Navas de la Concepción (Sevilla); MNCN_ICTIO 272324-‍33, 10 specimens from Guadalete River, Puerto Serrano (Cádiz); MNCN_ICTIO 289456, 1 specimen from Estena River, Navas de Estena (Ciudad Real).

  • Squalius malacitanus of the Mediterranean Lineage: MNCN_ICTIO 212280-‍89, 10 specimens (paratypes) from Guadalmina River, Benahavis (Málaga); MNCN_ICTIO 63647-‍56 10 specimens from Hozgarganta River, Jimena de la Frontera (Cádiz).

  • Squalius malacitanus of the Atlantic Lineage: MNCN_ICTIO 29700-‍09, 10 specimens from Jara River, Tarifa (Cádiz); MNCN_ICTIO 296956-‍65, 10 specimens from Vega River, Tarifa (Cádiz).

Additionally dry skeletons preserved in the MNCN collections were studied from the following localities:

  • Squalius pyrenaicus of the Northern Lineage: MNCN_ICTIO 69458-‍62, 69463-‍68, 20671-‍73, 20680, 14 specimens from Alburrel River, Valencia de Alcántara (Cáceres); MNCN_ICTIO 69484-‍85, 2 specimens from Jarama River, Talamanca del Jarama (Madrid); MNCN_ICTIO 69470, 1 specimen from Tajo River, Villarreal de San Carlos (Cáceres); MNCN_ICTIO 69471, 1 specimen from Salor River, Membrio (Cáceres); MNCN_ICTIO 69477, 20674, 2 specimens from Guadalix River, San Agustín de Guadalix (Madrid); MNCN_ICTIO 20277, 20280, 20675, 20676, 4 specimens from Pinilla Reservoir, Pinilla (Madrid); MNCN_ICTIO 20278, 1 specimen, from Aurela River, Santiago de Alcántara (Cáceres).

  • Squalius pyrenaicus of the Southern Lineage: MNCN_ICTIO 69469, 1 specimen from Gévora River, Alburquerque (Badajoz); MNCN_ICTIO 69472-‍74, 3 specimens from Záncara River, Zafra de Záncara (Cuenca). MNCN_ICTIO 69475, 69476, 69478, 3 specimens from Robledillo River, Solana del Pino (Ciudad Real).

Institutional acronyms: MNCN_ICTIO, Ichthyological Collection, Museo Nacional de Ciencias Naturales (Spain).

Genetic analyses

Genetic analyses of Iberian Squalius have been the focus of previous studies to resolve their phylogenetic relationships and biogeography with mitochondrial and nuclear genes (‍Sanjur et al., 2003; ‍Perea et al., 2016, ‍2020, ‍2021). For this reason, the Iberian populations of the genus Squalius are well studied group from the phylogenetic point of view. In this study we reanalyse a data set of 268 sequences for the mitochondrial cytochrome b gene (MT-CYB, 924 pb) obtained from previously published sequences (see Appendix 1 for GenBank accession numbers). Two different phylogenetic analyses were performed using Bayesian inference (BI), implemented in MrBayes ver. 3.2 (‍Ronquist et al., 2012), and Maximum Likelihood, carried out in the IQ-tree online web server from the Vienna University (http://iqtree.cibiv.univie.ac.at/; ‍Trifinopoulus et al., 2016). ModelFinder, implemented in the previous IQ-Tree web server (‍Kalyaanamoorthy et al., 2017) and the Bayesian Information Criterion (‍Schwarz, 1978) were used to estimate the evolutionary model that best fitted the data. The selected evolutionary model was TNF+F+G4. The Bayesian analysis was performed with two simultaneous independent runs each with four Markov chain Monte Carlo (MCMC), which were run for 5 × 107 generations. The first 25% of generations were removed as burn-in. Posterior probability (pp) values were used to assess the reliability of the phylogenetic hypothesis. The accuracy of the Maximum Likelihood phylogeny was evaluated with the UltraFast Bootstrap method (1000 replicates) (‍Minh et al., 2013). For nuclear phylogeny, we derived a concatenated tree topology from the phylogenetic tree presented by Perea et al. (2020), based on the analysis of six nuclear genes and 4871 bp including gaps (Bayesian Inference and Maximum Likelihood analysis; GenBank Accession Numbers: MT-CYB: MT008486–MT008603; RAG1: MT008604–MT008704, S7: MT00855–MT008805, EFA1α: MT008910-MT009018, EGR2b: MT051740–MT051843, RHO: MT008806–MT008909, ACTB: MT051635–MT051739). We also calculated the uncorrected p-distances and verify the presence of autapomorphies among Squalius populations studied for the MT-CYB gene usingMega X (‍Kumar et al., 2018) to sequences download from the GeneBank data base (Appendix 1).

Results and discussion[Up]

The principal component analysis to all populations and species divided the studied species of Squalius into four groups corresponding to populations of: a) S. pyrenaicus from the Northern Lineage (Tajo Drainage); b) S. pyrenaicus from the Southern Lineage (Guadalquivir, Guadalhorce and Vélez Drainages); c) S. malacitanus from the Mediterranean Lineage (Guadalmina and Guadiaro Drainages); and d) S. malacitanus from Atlantic Lineage (Jara drainage). All populations of Squalius pyrenaicus and all populations of Squalius malacitanus were considered in different groups without overlapping and the same occurred with the Northern and Southern lineages of S. pyrenaicus (Fig. 1). On the contrary, Atlantic and Mediterranean lineages of S. malacitanus showed a wide overlapping (Fig. 1). This overlapping between the Mediterranean and Atlantic lineages of S. malacitanus was similar to that found between populations from different rivers within the same species. A certain arrangement can be observed between the populations from the Almonte and Jerte Rivers, within the Northern Lineage, which live in rivers with different typologies. The Almonte River is a Mediterranean-like river influenced by severe water stress during the summer, with specimens of S. pyrenaicus surviving in disconnected pools.On the contrary, the Jerte is a mountain river with a permanent flow throughout the year. It can also be observed in the Southern Lineage a certain arrangement separating the populations from Vélez and Guadalquivir drainages.

Fig. 1.— Variables that most contributed to the PCA to all populations of the genus Squalius. Symbols: Fill Squares, Almonte River (Tajo Drainage), Northern Lineage of S. pyrenaicus. Stars, Jerte River (Tajo Drainage), Northern Lineage of S. pyrenaicus. Triangles, Mediterranean Lineage of S. malacitanus. Fill Triangles, Atlantic Lineage of S. malacitanus. Dots, Grande River (Guadalhorce drainage), Southern Lineage of S. pyrenaicus. Circles, Sabar and Cuevas Rivers (Vélez Drainage), Southern Lineage of S. pyrenaicus. Plus, Cala River (Guadalquivir Drainage), Southern Lineage of S. pyrenaicus. Diamonds, Ciudadeja River (Guadalquivir Drainage), Southern Lineage of S. pyrenaicus. Abbreviations are defined in the Material and methods section.

Fig. 1.– Variables que más contribuyen al ordenamiento en el PCA para todas las poblaciones del género Squalius. Símbolos: Cuadrados, en negro río Almonte (Cuenca del Tajo), Linaje del Norte de S. pyrenaicus. Estrellas, río Jerte (Cuenca del Tajo), Linaje del Norte de S. pyrenaicus. Triángulos, Linaje Mediterráneo de S. malacitanus. Triángulos en negro, Linaje Atlántico de S. malacitanus. Puntos negros, río Grande (Cuenca del Guadalhorce), Linaje del Sur de S. pyrenaicus. Círculos, ríos Sabar y Cuevas (Cuenca del Vélez), Linaje del Sur de S. pyrenaicus. Más, río Cala (Cuenca del Guadalquivir), Linaje del Sur de S. pyrenaicus. Diamantes, río Ciudadeja (Cuenca del Guadalquivir), Linaje del Sur de S. pyrenaicus. Las abreviaturas están descritas en el epígrafe de Material y métodos.

mediumimage/graellsia-79-2-e205-image1.png

The eigenvalues of the two first principal components, with the Burnaby-corrected matrix, explained most of the variance (Table 2).

The highest values for eigenvectors, and consequently the variables that contributed most to the ordination in the PCA, were the measurements related with the different proportions of the head (Table 2) as occur in other Iberian species of the genus Squalius (‍Doadrio, 1988; ‍Doadrio & Carmona, 2006; ‍Doadrio et al., 2007a, ‍2007b). The length and height of the caudal peduncle was not as decisive in the ordination of the populations as in other morphological studies of Squalius species (‍Doadrio & Carmona, 2006).

To clarify the variables that in each species contribute most to the ordination of the PCA we conducted a separated PCA for the populations of each species. Populations of S. pyrenaicus were divided in Northern and Southern lineages (Appendix 2) and the eigenvalues of the two first principal components, with the Burnaby-corrected matrix, explained most of the variance (Appendix 3).

The eigenvectors and consequently the variables that most contributed to the ordination of the PCA were preorbital, postorbital and premaxilla length (Appendix 3). This was a result of the different position of the eye on the head between the specimens of both lineages. In the southern lineage, the eye was displaced toward the snout resulting in a shorter preorbital lengths and a longer postorbital length. The PCA also shown a small differentiation between the populations from the Tajo drainage, as was explained previously. This was not so evident in the Southern lineage.

Regarding Squalius malacitanus, the first two PCs arranged the specimens in Atlantic and Mediterranean lineages (Appendix 4). However, the variance was spread among most of the PCs. The four first PCA were significant and eigenvalues to the first two PCs only explained 38.99 % of the variance (Appendix 5). For these reasons, we interpret that the PCA was not successful and our morphometric variables do not adequately separate the two lineages of S. malacitanus.

Table 2.— Eigenvalues and eigenvectors for the first two principal components (PCI-PCII) of 23 morphometric variables for all the Squalius populations. Acronyms are defined in the Material and Methods section. In bold variables with the highest eigenvectors for each PC.

Tabla 2.– Eigenvalores y eigenvectores para los dos primeros componentes principales (PCI-PCII) de 23 variables morfométricas para todas las poblaciones del género Squalius. Las abreviaturas están descritas en el epígrafe de Material y Métodos. En negrita variables con los eigenvectores más altos para cada CP.

PCI PCII
Eigenvalue 0.039 0.016
% Variance 60.3 24.98
Eig. 2.5% 57.37 22.29
Eig. 97% 63.2 27.64
Eigenvectors
SL 0.085 -0.005
PrDD -0.035 -0.056
PrPD -0.084 0.160
PrVD 0.174 0.033
PrAD 0.083 0.001
APL 0.059 0.078
DPL 0.292 0.086
HL -0.226 0.152
PrOL 0.307 0.098
ED -0.084 0.662
PsOL -0.497 -0.286
NL 0.060 -0.058
HH -0.169 0.141
PmxL -0.389 0.067
PFL 0.283 -0.318
VFL 0.163 -0.129
DFL -0.143 0.076
DFH -0.038 -0.094
AFL 0.251 -0.219
AFH -0.176 -0.301
CFL -0.137 -0.195
BD 0.169 0.259
BLD 0.078 -0.032

The number of scales in the lateral line is very similar in all Mediterranean species of the genus Squalius, although some differences were observed in the studied populations (Fig. 2).

Fig. 2.— Number of pored scales in the lateral line in the different populations: 1, Atlantic Lineage of S. malacitanus; 2, Mediterranean Lineage of S. malacitanus; 3, Southern Lineage of S. pyrenaicus and 4, Northern Lineage of S. pyrenaicus.

Fig. 2.– Número de escamas caniculadas en la línea lateral para las diferentes poblaciones: 1, Linaje Atlántico de S. malacitanus; 2, Linaje Mediterráneo de S. malacitanus; 3, Linaje del sur de S. pyrenaicus y 4, Linaje del Norte de S. pyrenaicus.

mediumimage/graellsia-79-2-e205-image2.png

The number of scales in the lateral line was smaller in populations of the Atlantic lineage of S. malacitanus ( = 38, 36-‍40, n=98) and in the Southern populations of S. pyrenaicus ( = 39, 37-‍41, n=125). Populations of the Northern Lineage of S. pyrenaicus ( = 41, 39-‍43, n=81) and of Mediterranean Lineage of S. malacitanus ( = 40, 39-‍43, n=58) had highest number of scales in the lateral line.

The number of vertebras was also smaller in the Atlantic Lineage of S. malacitanus ( = 37, 36-‍38, n=20). The values greater were to the Northern Lineage of S. pyrenaicus ( = 39, 39-‍41, n=20) and intermediate values were to the Mediterranean Lineage of S. malacitanus ( = 38, 37-‍39, n=20) and Southern Lineage of S. pyrenaicus ( = 38, 37-‍39, n=20) (Appendix 6).

In the case of S. malacitanus these differences cannot be explained by differences in environmental variables since both lineages inhabit adjacent rivers with identical typology.

Osteology features

Infraorbital bones were large in all populations of Squalius except in the Mediterranean population of S. malacitanus, which had narrower infraorbital bones. This was more conspicuous on 2nd and 3rd infraorbitals (Fig. 3). All the examined adult specimens from the Southern population of the S. pyrenaicus had exceptionally wide infraorbital bones (Fig. 3).

The skull of the Southern population of S. pyrenaicus was wider than in other populations of the genus and with a wide ethmoids bone (Appendix 7).

Fig. 3.— Infraorbital bones of Squalius populations under study: A, Mediterranean population of S. malacitanus from type locality; B, Atlantic population of S. malacitanus; C, Northern population of S. pyrenaicus and D, Southern population of S. pyrenaicus. Arrows indicate the height of the second infraorbital. Abbreviations: i2 = 2th infraorbital, i3 = 3th infraorbital, i4 = 4th infraorbital, i5 = 5th infraorbital, lc = lachrymal, op = opercle, pro = preoperculum.

Fig. 3.– Huesos infraorbitarios de las poblaciones estudiadas del género Squalius. A, población mediterránea de S. malacitanus proveniente de la localidad típica. B, población atlántica de S. malacitanus. C, población meridional de S. pyrenaicus. D, población septentrional de S. pyrenaicus. Las flechas indican la altura del segundo infraorbitario. Abreviaturas: i2 = segundo infraorbitario, i3 = tercer infraorbitario, i4 = cuarto infraorbitario, i5 = quinto infraorbitario lc = lagrimal, op = opérculo, pro = preopérculo.

mediumimage/graellsia-79-2-e205-image3.png

The maxilla of the Northern populations of S. pyrenaicus was very robust, with a posterior process stronger than in any other studied population (Appendix 8). The anterior process of the maxilla was more pointed in S. pyrenaicus populations, both Northern and Southern lineages, than in S. malacitanus, as was previously described (‍Doadrio & Carmona, 2006). The coronoid process was variable depending on the size of the specimen, but always was more perpendicular to the skull axis in S. pyrenaicus (northern and southern populations), whereas in S. malacitanus (Atlantic and Mediterranean populations) it was generally more inclined towards the back of the skull.

Basioccipital shape was also distinguishable between S. pyrenaicus and S. malacitanus. All populations of S. pyrenaicus had a clear triangular shape while populations of S. malacitanus had a more rounded and laterally expanded pharyngeal plate short (Appendix 9).

The pharyngeal teeth in the populations of S. pyrenaicus had strong and very conspicuous denticulations. On the contrary, in the populations of S. malacitanus the denticulations were less evident (Appendix 10). The pharyngeal teeth were thinner in the Mediterranean populations of S. malacitanus than in remaining populations, which was very evident in the two small pharyngeal teeth of the second row (Appendix 9). Considering specimens of the same size, the Mediterranean populations of S. malacitanus had the lower branch of the pharyngeal bone longer and less robust.

The cleithrum shape was very variable with the size of the individuals but usually the Southern population of S. pyrenaicus had a posterior lamina more expanding, as was previously described (‍Doadrio & Carmona, 2006) (Appendix 11).

Genetics

The most divergent species based on the MT-CYB gene were the Portuguese Squalius aradensis and S. torgalensis, sister to the remaining Iberian Squalius species. Previous studies on the phylogenetic relationships of the Iberian Squalius showed three highly divergent nuclear and mitochondrial clades in the species S. pyrenaicus, as is showed in the phylogenetic tree of the Fig. 4A. These three mitochondrial lineages are constituted by Northern populations (Tagus Drainage), Southern populations (Guadiana and Guadalquivir Drainage) and Sado Drainage, and they were the sister group of Squalius valentinus. Nevertheless, the nuclear monophyly of these three lineages was not recovered (Fig. 4B): indeed, Northern populations of S. pyrenaicus were clustered in a polytomy together with S. carolitertii and S. castellanus, and they were not closely related with the other two S. pyrenaicus clades (Southern and Sado). The species Squalius malacitanus also exhibited highly mitochondrial and nuclear divergent clades (Fig. 4A and 4B), which encompassed the Atlantic and the Mediterranean populations separately. The species Squalius carolitertii was closely related with Squalius castellanus. The mitochondrial and nuclear phylogenetic relationshipsinferred in this study were in concordance with previous studies of the genus (‍Doadrio & Carmona, 2003, ‍2006; ‍Sanjur et al., 2003; ‍Almada & Sousa-Santos, 2010; ‍Perea et al., 2020, ‍2021; ‍Mendes et al. 2021).

Uncorrected-p genetic distances based on MT-CYB between all Iberian Squalius species ranged from 1.6%, between Northern and Southern populations of S. pyrenaicus and 12.1%, between S. valentinus and S. torgalensis (Appendix 12). Uncorrected-p genetic distances of Southern populations of S. pyrenaicus relative to the remaining species were 2.7% with S. valentinus, 6, and 6.4% with S. carolitertii and S. castellanus, 7.6 and 8.6% with Mediterranean and Atlantic populations of S. malacitanus, and finally 10.6 and 11.6% with S. aradensis and S. torgalensis. In turn, uncorrected-p distances of Atlantic populations of S. malacitanus relative to the other analyzed species were 4.2% with Mediterranean populations of S. malacitanus, from 7.9 to 8.7% with the clade formed by S. valentinus and the three divergent lineages of S. pyrenaicus, and, finally, 10.9 and 11.4% with S. aradensis and S. torgalensis.

Atlantic population of S. malacitanus had two autapomorphies in the mitochondrial MT-CYB gene, none of them were transversions (Appendix 13).

Fig. 4.— A. Phylogenetic tree rendered by Maximum Likelihood and Bayesian Inference based on MT-CYB gene. B. Phylogenetic tree topology obtained from Perea et al., 2020, based on six nuclear genes. In both tree topologies terminal nodes are collapsed. Numbers on branches indicate posterior probability (before slash) and bootstrap (after slash) values.

Fig. 4.– A. Árbol filogenético generado por Máxima Verosimilitud e Inferencia Bayesiana a partir del gen MT-CYB. B. Árbol filogenético obtenido de Perea et al., 2020 a partir de seis genes nucleares. En ambas topologí;as los nodos terminales han sido colapsados. Los números en las ramas indican valores de probabilidad posterior (antes de la barra) y de bootstrap (después de la barra).

mediumimage/graellsia-79-2-e205-image4.png

Taxonomy[Up]

Description of the Squalius populations

The high degree of morphological and genetic differentiation of Squalius malacitanus populations endemic to the Atlantic drainages and to the Miel drainage in the Mediterranean slope, and of the Squalius pyrenaicus populations from Southern Iberian drainages justifies the consideration of these population as distinct species. No available names for these populations exist, and therefore, these are described as new species in the present study.

Fig. 5.— Holotype of Squalius gaditanus sp. nov. from the Vega River, Jara Drainage, Tarifa, Cádiz, Spain. MNCN_ICTIO 296955 SL=89.3 mm. Scale bar = 5 mm.

Fig. 5.– Holotipo de Squalius gaditanus sp. nov. del río Vega, cuenca del río Jara, Tarifa, Cádiz, España. MNCN_ICTIO 296955. SL=89,3 mm. Escala = 5 mm.

mediumimage/graellsia-79-2-e205-image5.png

Squalius gaditanus Doadrio & Perea sp. nov.

urn:lsid:zoobank.org:act:5FB352FD-3789-4707-B74F-8C924579ED0D

Figs. 56, Table 3

Holotype: MNCN_ICTIO 296955 89.3 mm SL, 104.2 mm TL; Vega River, Jara Drainage, Tarifa, Cádiz, Spain, 36.028230, -5.610120, 7 m.a.s.l., Leg. P. Garzón-Heydt, T. Nester, A. López Solano and I. Doadrio, 13.V.2022.

Paratypes: MNCN_ICTIO 296956-‍70, 15 specimens, Vega River, Jara Drainage, Tarifa, Cádiz, Spain, 36.028230, -5.610120, 7 m.a.s.l., Leg. P. Garzón-Heydt, T. Nester, A. López Solano and I. Doadrio, 17.V.2022. MNCN_ICTIO 296971-‍99 29 specimens, Vega River, Jara Drainage, Tarifa, Cádiz, Spain, 36.028230, -5.610120, 7 m.a.s.l., Leg. P. Garzón-Heydt, T. Nester, A. López Solano and I. Doadrio, 30.IV.2022. MNCN_ICTIO 297000-‍23, 24 specimens, Jara River, Jara Drainage, Tarifa, Cádiz, Spain, 36.103309, -5.632100, 8 m.a.s.l., Leg. P. Garzón-Heydt and I. Doadrio, 29.X.2022.

Additional material

Barbate Drainage: MNCN_ICTIO 196716-‍20, 5 specimens, Almodovar River, Facinas, Cádiz, Spain, 36.175707, -5.718908, 130 m.a.s.l., Leg. B. Elvira, 28.X.1986. MNCN_ICTIO 197661, 197671-‍74, 25348, 34272, 7 specimens, Barbate River, Casas Viejas-Benalup, Cádiz. Spain. 36.333889. -5.791512. 112 m.a.s.l.. Leg. P. Garzón-Heydt and I. Doadrio. 25.X.1978. MNCN_ICTIO 297024-‍34, 11 specimens, Celemín River, Casas Viejas-Benalup, Cádiz, Spain, 36.299330, -5.781360, 112 m.a.s.l., Leg. P. Garzón-Heydt and I. Doadrio. MNCN_ICTIO 297035-‍65, 31 specimens, Celemín River, Casas Viejas-Benalup, Cádiz, Spain, 36.304878, -5.720132, 25 m.a.s.l., Leg. J. L. González, S. Perea, P. Garzón-Heydt and I. Doadrio, 25.VI.2010. MNCN_ICTIO 196546-‍196547, 2 specimens, Rocinejo River, Alcalá de los Gazules, Cádiz, Spain, 36.456306, -5.660076, 165 m.a.s.l., Leg. P. Garzón-Heydt and I. Doadrio, 21.IX.1979.

Jara Drainage: MNCN_ICTIO 196203-‍07, 5 specimens, Jara River, Tarifa, Cádiz, Spain, 36.058995, -5.637340, 7 m.a.s.l., Leg. L. Domínguez-Nevado and B. Elvira, 15.V.1981. MNCN_ICTIO 208205 – 08, 4 specimens, Jara River, Tarifa, Cádiz, Spain, 36.057973, -5.637296, 7 m.a.s.l., Leg. P. Garzón-Heydt and I. Doadrio, 30.IV.2000. MNCN_ICTIO 243727-‍55, 29 specimens, Jara River, Tarifa, Cádiz, Spain, 36.076393, -5.633670, 7 m.a.s.l., Leg. I. Doadrio, 11.V.2002. MNCN_ICTIO 272136-‍157, 22 specimens, Jara River, Tarifa, Cádiz, Spain, 36.075378, -5.632994, 7 m.a.s.l., Leg. B. Prieto, J. L. González and I. Doadrio, 27.V.2009. MNCN_ICTIO 297066-‍69, 4 specimens, Jara River, Tarifa, Cádiz, Spain, 36.078611, -5.632257, 53 m.a.s.l., Leg. J. L. González, S. Perea, P. Garzón-Heydt and I. Doadrio, 25.VI.2010. MNCN_ICTIO 243780-‍86, 7 specimens, Vega River, Tarifa, Cádiz, Spain, 36.028230, -5.610120, 7 m.a.s.l., Leg. I. Doadrio, 1.VI.2001. MNCN_ICTIO 297070-‍99, 30 specimens, Vega River, Tarifa, Cádiz, Spain, 36.028230, -5.610120, 5 m.a.s.l., Leg. J. L. González, S. Perea, P. Garzón-Heydt and I. Doadrio, 25.VI.2010. MNCN_ICTIO 297100-‍01, 2 specimens, Vega River, Tarifa, Cádiz, Spain, 36.028230, -5.610120, 7 m.a.s.l., Leg. P. Garzón-Heydt, T. Nester, A. López-Solano and I. Doadrio, 13.V.2022. MNCN_ICTIO 297102-‍17, 16 specimens, Vega River, Tarifa, Cádiz, Spain, 36.103309, -5.632100, 8 m.a.s.l., Leg. P. Garzón-Heydt. and I. Doadrio, 29.X.2022.

Miel Drainage: MNCN_ICTIO 286853-‍286868, 16 specimens, Miel River, Algeciras, Cádiz, Spain, 36.116310, -5.485037, 20 m.a.s.l., Leg. P. Garzón-Heydt and I. Doadrio, 10.V.2002. MNCN_ICTIO 272271-‍272323, 52 specimens, Miel River, Algeciras, Cádiz, Spain, 36.116951, -5.483589, 20 m.a.s.l., Leg. M. Casal, S. Perea and I. Doadrio, 27.V.2009. MNCN_ICTIO 297118-‍21, 4 specimens, Miel River, Algeciras, Cádiz, Spain, 36.118285, -5.481130, 58 m.a.s.l., Leg. J. L. González, S. Perea, P. Garzón-Heydt and I. Doadrio, 26.VI.2010.

Diagnosis. Squalius gaditanus sp. nov. is a member of the Mediterranean clade of the Iberian species of the genus Squalius (‍Sanjur et al., 2003; ‍Perea et al., 2020). Squalius gaditanus sp. nov. can be differentiated from all other known species of Squalius from the Iberian peninsula according to the following set of characters: 36-‍40 (=38; = 38; n = 98) pored scales on the lateral line; 6-‍7 (=6.7; = 7; n=98) scales above the lateral line; 2-‍3 (=2.8; = 3; n=98) scales below the lateral line; 36-‍38 (=37; = 37; n=10) number of vertebrae. Second infraorbital bone narrower than the third in adults. Maxilla with reduced pointed anterior process. Dentary short with inclined coronoid process. Posterior process of the maxilla long and thin. The lower branch of the pharyngeal bone is short and robust. Pharyngeal plate of basioccipital rounded. Squalius gaditanus sp. nov. is distinguishable from S. malacitanus, the morphological and phylogenetically most related species by lesser number of pored scales on the lateral line =38 36-40 vs =41, 39-‍43; lesser number of vertebrae 36-‍38 (=37)vs 37-39 (=38); second infraorbital bone wide vs narrow; lower branch of the pharyngeal bone short and robust vs long and thin and pharyngeal teeth robust vs thin. Genetic distances from the other species of Squalius inferred from the mitochondrial MT-CYB gene were: 4.2% with respect to S. malacitanus; 8.5% with respect to S. pyrenaicus of Northern population; 8.6% with respect to S. pyrenaicus of Southern population; 8.6% with respect to S. valentinus; 8.7% with respect to S. castellanus; about 7.9% with respect to S. carolitertii; 11.4% with respect to S. torgalensis and 10.9% with respect to S. aradensis. The new species has two autapomorphies none of them transversions in the MT-CYB gene (positions 714 and 870; Appendix 9).

Description. D III (II) 8; A III (II) 8; P I 14; V I 8; C 17; LLS 38 (36-‍40); SRA 6-‍7; SRB= 2-‍3; RPT 5.2; LPT 5.2; Vr = 37 (36-‍38). Morphometric and meristic characters of the type material are given in Table 3; measurements used in the morphometric study appear in Appendix 11. A medium-sized species that rarely reaches 130 mm of standard length. The head is short with the mouth terminal and SL/HL is 3.6-4.3 (=4). The head length is similar to the height maxima of the body and BD/HL is 0.9-1.2 (=1). The preorbital distance is short and HL/PrOL is 3.8-4.8 (=4.3). The caudal peduncle is high and CPL/BLD is 3-‍3.8 (=3,4). The minimum body depth is 2-‍2.5 (=2.3) times lesser than the maximum body depth. The ventral fins are inserted approximately at the same level of the origin of the dorsal fin and PrDD/PrVD is 1-‍1.1 (=1.1). Fins are short. Without or very small nuptial tubercles in males.

Table 3.— Morphological variables used to define the morphometric and meristic characters of S. gaditanus sp. nov. type series. Variables as described in the Material and methods section (SD = standard deviation).

Tabla 3.– Variables morfológicas utilizadas para definir los caracteres morfométricos y merísticos de la serie tipo de S. gaditanus sp. nov. Las variables son descritas en la sección de Material y métodos (SD = desviación típica).

Squalius gaditanus sp. nov.
Variable Holotype Paratypes (n = 68)
Range Mean SD
TL 104.2 39.5-139.9 85.9 19
SL 89.3 33.3-120 73 16.5
PrDD 50 17.9-62.7 39.4 8.4
PrPD 22.9 8-27.9 23.1 4
PrVD 45.7 16.1-59.5 44.9 8.3
PrAD 64.8 22.6-83.9 61.4 11.7
APL 21.9 7.9-29.4 20.2 4.1
CPL 35 12.5-44.7 32.6 6.3
HL 23.3 7.8-28.5 22.7 4.1
PrOL 5.6 1.7-6.4 5.6 1.1
ED 5.9 2.4-7.6 6.3 1
PsOL 11.3 3.9-14.3 11.1 2
NL 17.7 6.3-21.5 17.2 2.9
HH 17.5 6.1-21.6 17.2 3.1
PmxL 7.8 2.5-8.6 7.3 1.3
PFL 14.9 5.9-19.9 15.5 2.8
VFL 13.7 5.1-18.8 13.6 2.4
DFL 11.7 3.5-15.5 10.6 2.2
DHL 16 6.2-21.6 16.4 2.9
AFL 9.8 3.7-12.7 8.3 1.8
AHL 13.7 4.7-17.7 13.3 2.3
CFL 18.2 7-23 17.6 3.1
BLD 10.5 3.9-13.7 9.8 1.9
BD 23.7 8.9-31.9 21 4.5
LLS 38 36-39 37.5 0.7
SRA 7 6-7 6.8 0.5
SRB 3 2-3 2.8 0.4
D 8 8 8 0
A 8 8 8 0

Pigmentation pattern. The body is silver with the dorsal portion dark grey, which is clearly visible in all specimens. The scales have one big black spot on the base and a series of small black spots on the distal border. The basis of pectoral fins is brown or orange. Fins rays dark grey.

Etymology. The species name gaditanus is derived from the Phoenician name of the current Cádiz province where the species is distributed.

Distribution. This new species is endemic to three small drainages of southern Spain: Jara, Barbate that drain on the Atlantic slope and Miel on the Mediterranean slope around of Gibraltar Strait. Probably S. gaditanus was widely distributed in the ancient Janda lagoon but this was dried up in the 20th century (‍Perea et al., 2016) (Fig. 6).

Fig. 6.— Distribution range of S. gaditanus. Dots: localities with S. gaditanus specimens in the MNCN_ICTIO collection

Fig. 6.– Área de distribución de S. gaditanus. Puntos localidades con ejemplares de S. gaditanus en la colección del MNCN_ICTIO.

mediumimage/graellsia-79-2-e205-image6.png

Common name. Cachuelo gaditano.

Remarks. The species typically inhabits rivers with a Mediterranean typology conditioned by severe water stress during the summer, with specimens of S. gaditanus surviving in disconnected pools. During the autumn these rivers can have large discharges that considerably increase the flow of the river, sometimes causing disasters in human infrastructures. The drying up of the Janda Lagoon (‍Finlayson et al., 1997), with its 50 km2, eliminated an important refuge for S. gaditanus in the face of the great discharges of autumn and the summer droughts. Reservoirs have drastically transformed the habitat of S. gaditanus in the Barbate drainage and have been a source of introduction and proliferation of invasive species. In this basin, the species is distributed almost exclusively in the headwaters of the rivers. The species should be considered Critically Endangered according to the IUCN red list criteria due to the extent of its occurrence being less than 100 km2 and to the fragmentation of its populations.

Fig. 7.— Holotype of Squalius tartessicus sp. nov. from the River Ciudadeja, Guadalquivir Drainage, Sevilla, Spain. MNCN_ICTIO 272254. SL= 112.2 mm. Scale bar = 10 mm.

Fig. 7.– Holotipo de Squalius tartessicus sp. nov. del río Ciudadeja, cuenca del río Guadalquivir, Sevilla, Spain. MNCN_ICTIO 272254. SL= 112.2 mm. Escala = 10 mm.

mediumimage/graellsia-79-2-e205-image7.png

Squalius tartessicus sp. nov.

urn:lsid:zoobank.org:act:E78C1F26-5FAC-4976-8148-CC89B9597E1D

Figs. 78, Table 4

Holotype: MNCN_ICTIO 272254 112.2 mm SL. 128 mm TL; Ciudadeja River, Guadalquivir Drainage, Las Navas de la Concepción, Sevilla, Spain, 37.917956, -5.480368, 434 m.a.s.l., Leg. P. Garzón-Heydt, J. L González, B. Prieto and E. Herrero, 05.V.2007.

Paratypes: MNCN_ICTIO 272255-‍272271, 17 specimens Ciudadeja River, Guadalquivir Drainage, Las Navas de la Concepción, Sevilla, Spain, 37.917956, -5.480368, 434 m.a.s.l., Leg. P. Garzón-Heydt. J. L. González, B. Prieto and E. Herrero, 05.V.2007. MNCN_ICTIO 272656-‍272701, 46 specimens Cala River, Guadalquivir Drainage, Santa Olalla de Cala, Huelva, Spain, 37.959673, -6.222448, 518 m.a.s.l., Leg. P. Garzón-Heydt & I. Doadrio, 19.IV.2009.

Fig. 8.— Distribution range of S. tartessicus. Dots: localities with S. tartessicus specimens in the MNCN_ICTIO collection.

Fig. 8.– Área de distribución de S. tartessicus. Puntos localidades con ejemplares de S. tartessicus en la colección del MNCN_ICTIO.

mediumimage/graellsia-79-2-e205-image8.png

Additional material. See Appendix 14.

Diagnosis. Squalius tartessicus sp. nov. is a member of the Mediterranean clade of the genus Squalius (‍Sanjur et al., 2003; ‍Perea et al., 2020). Squalius tartessicus sp. nov. can be differentiated from all other known species of Squalius from Iberian peninsula according to the following set of characters: 37-‍41 (=38.8, = 39, n=125) pored scales on the lateral line; 6-‍7 (=7, = 7, n=125) scales above the lateral line; 2-‍3 (=2.9; = 3; n=125) scales below the lateral line; 37-‍39 (=38; = 38; n=20) number of vertebrae. Infraorbital bones unusually wide in adults. Maxilla with discernable pointed anterior process. Dentary short, not inclined. Posterior process of the maxilla long and thin. The lower branch of the pharyngeal bone is short and robust. Pharyngeal plate of basioccipital triangular in shape. Posterior lamina of cleithrum expanding posteriorly. Squalius tartessicus sp. nov. is distinguishable from S. pyrenaicus, by lesser number of pored scales on the lateral line 37-‍41 (=38.8) vs 39-43 (=40); short preorbital length vs long preorbital length; mouth subterminal vs terminal mouth; in adults specimens 2nd infraorbital bone as wide as 3rdvs 2nd infraorbital narrower than 3rd; ethmoid bone wide vs narrow; in adults lamina of cleithrum expanding posteriorly vs scarcely expanding posteriorly.

Genetic distances from the other species of Squalius, inferred from the mitochondrial MT-CYB gene sequences, were: 7.6% with respect to S. malacitanus; 1.6% with respect to S. pyrenaicus of Northern population; 8.6% with respect to S. gaditanus; 2.7% with respect to S. valentinus; 6.4% with respect to S. castellanus; 6% with respect to S. carolitertii; 11.6% with respect to S. torgalensis and 10,6% with respect to S. aradensis.

Table 4.— Morphological variables used to define the morphometric and meristic characters of S. tartessicus sp. nov. type series. Variables as described in the Material and methods section (SD = standard deviation).

Tabla 4.– Variables morfológicas utilizadas para definir los caracteres morfométricos y merísticos de la serie tipo de S. tartessicus sp. nov. Las variables son descritas en la sección de Material y métodos (SD = desviación típica).

Squalius tartessicus sp. nov.
Variable Holotype Paratypes (n = 63)
Range Mean SD
TL 128 58.1-140.3 82.4 20.5
SL 112.2 49.3-122 71 18.2
PrDD 59.8 26.4-64.3 38.4 9.5
PrPD 25.4 11.8-29.6 17.6 4.1
PrVD 55.1 24.3-58.9 35.4 8.6
PrAD 77.1 34.3-82.6 48.9 12.4
APL 26.1 10.9-29.6 17 4.5
CPL 42.3 18.2-47 26.7 7.1
HL 25.6 11.3-30.1 17.4 4.1
PrOL 6.6 2.7-7.5 4 1.2
ED 6.5 2.9-7.8 4.7 1
PsOL 12.5 5.7-15.6 8.8 2.1
NL 19.9 9.1-22.4 13.3 3.1
HH 19,9 9.1-22.4 13.5 3.1
PmxL 7.6 3.5-9.5 5.4 1.3
PFL 17.1 8-20.3 11.7 2.8
VFL 15.8 6.7-19 10.4 2.8
DFL 13.8 5.6-15.3 8.3 2.3
DHL 17.5 7.7-19.9 11.7 2.7
AFL 11.8 4.8-13.1 7.2 2.1
AHL 13.4 6.3-15.5 9.5 2
CFL 19.7 9.6-22.3 13.3 2.9
BLD 13.6 5.6-14.1 8.2 2.2
BD 28.8 11.6-32 18.8 4.9
LLS 40 37-41 38.6 1
SRA 7 6-7 6.8 0.4
SRB 3 2-3 2.9 0.4
D 8 8 8 0
A 8 8 8 0

Description. D III 8; A III 8; P I 114-‍15; V I 8; C 17; LLS 39 (37-‍41); SRA 6-‍7; SRB 2-‍3; RPT 5.2 LPT 5.2; Vr= 38 (37-‍39). Morphometric and meristic characters of the type material are presented in Table 4; measurements used in the morphometric study are listed in Appendix 12. Squalius tartessicus sp. nov. is a medium-sized species that rarely reaches 200 mm of standard length. The head is short with the mouth terminal and SL/HL is 3.8-4.7 (=4.2). The head length is shorter than the height maxima of the body and BD/HL is 1-‍1.4 (=1.2) and head length to nape; is similar to the head high and NH/NL is 0.9-1.2 (=1). The preorbital distance is usually shorter than in other Squalius species but was very variable in the different populations and HL/PrOL is 3.4-5.2 (=4.1). Maxilla is shorter than in S. malacitanus and the length is slightly greater than eye diameter and MxL/ED is 1-‍1.3 (=1.1). The caudal peduncle is high and CPL/BLD is 2.9-3.7 (=3,3). The minimum body depth is deeper than in other Squalius species and is 2-‍2.7 (=2) times lesser than the maximum body depth. The ventral fins are inserted approximately at the same level of the origin of the dorsal fin and PrDD/PrVD is 1-‍1.1 (=1.1). With small nuptial tubercles in males distributedthroughout the body. Summary of diagnostic traits of S. malacitanus, S. gaditanus, S. pyrenaicus and S. tartessicus is presented in Table 5.

Table 5.— Diagnostic morphological characters of the four populations studied.

Table 5.– Caracteres morfológicos diagnósticos de las cuatro poblaciones estudiadas.

S. malacitanus S. gaditanus S. pyrenaicus S. tartessicus
LLS =40 39-43 =38 36-40 =41 39-43 =39 37-41
Vr =38, 37-‍39 =37, 38-‍36 =39, 41-‍39 =38, 37-‍39
Infraorbitals 2th, 3th Narrow wide wide Unusually wide
Maxilla
Anterior process
Scarce pointed Scarce pointed Very pointed Very pointed
Maxilla Posterior process Short, Robust Long, Thin Long, Thin Long, Thin
Pharyngeal Plate Rounded Rounded Triangular Triangular
Pharyngeal teeth Denticulated Denticulated Strongly Denticulated Strongly Denticulated
Pharyngeal Bone Long, Thin Short, Robust Short, Robust Short, Robust
Cleithrum lamina posterior Not extended Not extended Not extended Extended
Pigmentation Dorsally contrasted Dorsally contrasted Dorsally not contrasted Dorsally not contrasted

Pigmentation pattern. The body is silver to brownish but without the characteristic dorsal portion dark grey of S. malacitanus and S. gaditanus. The scales have one big black spot on the base and a series of small black spots on the distal border. The basis of pectoral fins is brown or orange. With small nuptial tubercles in males.

Etymology. The species name tartessicus is derived from Tartessos, a culture that for about 400 years (8th-5th centuries BC) was present in the southwest of the Iberian Peninsula where S. tartessicus sp. nov. is currently distributed.

Distribution. This new species is distributed throughout the Atlantic drainages of the southern Iberian Peninsula from Almargem in Portugal to Guadalete in Spain, including the main drainages of Guadiana and Guadalquivir. In the Mediterranean slope the species is distributed in Guadalhorce Vélez, Guadalfeo and Segura drainages (Fig. 6).

Common name. Cachuelo meridional.

Remarks. The species lives in very different types of habitats from mountain rivers with a permanent flow throughout the year to Mediterranean-like rivers conditioned by severe water stress during the summer, where surviving specimens are found in disconnected pools. This species prefers deep pools within rivers and it forms a well-studied hybrid complex in many of the basins with S. alburnoides (‍Cunha et al., 2004). The species should be considered Vulnerable according to the IUCN red list criteria due to the decreasing of its distribution area and population number mainly by increasing of reservoirs, presence of invasive species and pollution by agriculture.

Acknowledgments[Up]

Many people have participated in the field sampling trips. We warmly thank J. L. González, P. Garzón, I. Doadrio Jr., A. Doadrio, A. López and T. Nester. We would also like to thank L. Alcaraz, for her laboratory work, G. Solís, the curator of the ichthyological collection, and I. Rey and B. Álvarez, curators of the DNA collection at the National Museum of the Natural Sciences (MNCN-CSIC). We also thank C. Parejo and M. Pérez for her technical assistance in non-destructive techniques with the computerized tomography scan at the MNCN-CSIC. The images of the holotypes were produced by A. Sánchez-Vialas.

This research study was funded by the Spanish Ministry of Science and Innovation and the State Agency of Investigation (MCIN/AEI/10.13039/501100011033) as a part of the Project Aphanius PID2019-103936GB-C22, and by Portuguese funds through Fundação para a Ciência e Tecnologia (FCT), through the strategic project MARE/UIDB/MAR/04292/2020 awarded to MARE and LA/P/0069/2020 granted to the Associate Laboratory ARNET.

References[Up]

[1] 

Almada, V.C. & Sousa-Santos, C., 2010. Comparisons of the genetic structure of Squalius populations (Teleostei, Cyprinidae) from rivers with contrasting histories, drainage areas and climatic conditions based on two molecular markers. Molecular Phylogenetics and Evolution, 57 (2): 924-931. https://doi.org/10.1016/j.ympev.2010.08.015

[2] 

Burnaby, T.P., 1966. Growth-invariant discriminant functions and generalized distances. Biometrics, 22: 96-110. https://doi.org/10.2307/2528217

[3] 

Carmona, J.A., Sanjur, O.I., Doadrio, I., Machordom, A. & Vrijenhoek, R.C. 1997. Hybridogenetic reproduction and maternal ancestry of polyploid Iberian fish: the Tropidophoxinellus alburnoides complex. Genetics 146 (3): 983-993. https://doi.org/10.1093/genetics/146.3.983

[4] 

Collares-Pereira, M.J., & Coelho, M.M. 2010. Reconfirming the hybrid origin and generic status of the Iberian cyprinid complex Squalius alburnoides. Journal of Fish Biology, 76 (3): 707-715. https://doi.org/10.1111/j.1095-8649.2009.02460.x

[5] 

Cunha, C., Coelho, M.M., Carmona, J.A. & Doadrio, I., 2004. Phylogeographical insights into the origins of the Squalius alburnoides complex via multiple hybridization events. Molecular Ecology, 13 (9): 2807-2817. https://doi.org/10.1111/j.1365-294X.2004.02283.x

[6] 

Cunha, C., Doadrio, I., Abrantes, J. & Coelho, M.M., 2011. The evolutionary history of the allopolyploid Squalius alburnoides (Cyprinidae) complex in the northern Iberian Peninsula. Heredity 106 (1): 100-112. https://doi.org/10.1038/hdy.2010.70

[7] 

Darlington, P.J., 1948. The geographical distribution of cold-blooded vertebrates. The Quarterly Review of Biology 23 (1): 1–26. https://doi.org/10.1136/bmj.2.614.377)

[8] 

Doadrio, I., 1988. Leuciscus carolitertii n. sp. from the Iberian Peninsula (Pisces; Cyprinidae). Senckenbergiana Biologica 68 (4/6): 301-‍309.

[9] 

Doadrio, I. & Carmona, J.A., 2003. Testing freshwater Lago Mare dispersal theory on the phylogeny relationships of Iberian cyprinid genera Chondrostoma and Squalius (Cypriniformes, Cyprinidae). Graellsia, 59 (2-3): 457-473. https://doi.org/10.3989/graellsia.2003.v59.i2-3.260

[10] 

Doadrio, I. & Carmona, J.A., 2006. Phylogenetic overview of the genus Squalius (Actinopterygii. Cyprinidae) in the Iberian Peninsula. with description of two new species. Cybium 30 (3): 199-‍214.

[11] 

Doadrio, I., Kottelat, M. & de Sostoa, A., 2007a. Squalius laietanus. a new species of cyprinid fish from north-eastern Spain and southern France (Teleostei: Cyprinidae). Ichthyological Exploration of Freshwaters 18 (3): 247-‍256.

[12] 

Doadrio, I., Perea, S. & Alonso, F., 2007b. A new species of the genus Squalius Bonaparte, 1837 (Actinopterygii. Cyprinidae) from the Tagus River basin (central Spain). Graellsia 63 (1): 89-‍100.

[13] 

Doadrio, I., Perea, S., Garzón-Heydt, P. & González, J.L., 2011. Ictiofauna continental española: bases para su seguimiento. D.G. Medio Natural y Política Forestal. MARM. Madrid. 616 pp.

[14] 

Finlayson, J.C., Pacheco, F.G., Recio-Espejo, J.M., Mas-Cornella, M., Castro-Román, J.C., Dueñas-López, M.A., Finlayson, G. & Mosquera, M.A.J., 1997. Integrative multi-scale analysis of the impact of the drainage of the La Janda lake (Cádiz Province, Spain) and a model for its sustainable regeneration. Transactions on Ecology and the Environment, 16: 203-212. https://doi.org/10.2495/ECOSUD970211

[15] 

Hammer, O., Harper, D.A.T. & Ryan P.D., 2001. PAST: Paleontological statistics software package for education and data analysis. Palaentologia Electronica, 4 (1): 9pp.

[16] 

Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S., 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14 (6): 587-589. https://doi.org/10.1038/nmeth.4285

[17] 

Krijgsmann, W., Capellaa, W., Simona, D., Hilgena, F.J., Kouwenhovena, T. J. Meijera, P.T., Sierrob, F.J., Tulburea, M.A., van den Bergb, B. C. J. van der Scheeb, M. & Flecker, R., 2018. The Gibraltar corridor: watergate of the messinian salinity crisis. Marine Biology 403: 238–246. https://doi.org/10.1016/j.margeo.2018.06.008.

[18] 

Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K., 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547-‍1549. https://doi.org/10.1093/molbev/msy096.

[19] 

Mendes, S.L., Machado, M.P., Coelho, M.M. & Sousa, V.C., 2021. Genomic data and multi-species demographic modelling uncover past hybridization between currently allopatric freshwater species. Heredity 127: 401-412. https://doi.org/10.1038/s41437-021-00466-1

[20] 

Minh, B.Q., Nguyen, M.A.T. & von Haeseler, A., 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30 (5): 1188-1195. https://doi.org/10.1093/molbev/mst024

[21] 

Myers, G.S., 1938. Fresh-water fishes and west Indian zoogeography. Annual Report of the Board of Regents of the Smithsonian Institution, 1937: 339–364.

[22] 

Perea, S., Cobo-Simon, M. & Doadrio, I., 2016. Cenozoic tectonic and climatic events in southern Iberian Peninsula: Implications for the evolutionary history of freshwater fish of the genus Squalius (Actinopterygii. Cyprinidae). Molecular Phylogenetics and Evolution 97: 155-169. https://doi.org/10.1016/j.ympev.2016.01.007

[23] 

Perea, S., Sousa-Santos, C., Robalo, J. & Doadrio, I. 2020. Multilocus phylogeny and systematics of Iberian endemic Squalius (Actinopterygii. Leuciscidae). Zoologica Scripta, 49 (4): 440-457. https://doi.org/10.1111/zsc.12420

[24] 

Perea, S., Sousa-Santos, C., Robalo, J. & Doadrio, I., 2021. Historical biogeography of the Iberian Peninsula: Multilocus phylogeny and ancestral area reconstruction for the freshwater fish genus Squalius (Actinopterygii. Leuciscidae). Journal of Zoological Systematics and Evolutionary Research, 59 (4): 858-886. https://doi.org/10.1111/jzs.12464

[25] 

Rohlf, F.J., 2003. Bias and error in estimates of mean shape in geometric morphometrics. Journal of Human Heredity, 44 (6): 665-683. https://doi.org/10.1016/S0047-2484(03)00047-2

[26] 

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P., 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61: 539-542. https://doi.org/10.1093/sysbio/sys029

[27] 

Sanjur, O.I., Carmona, J.A. & Doadrio, I., 2003. Evolutionary and biogeographical patterns within Iberian populations of the genus Squalius inferred from molecular data. Molecular Phylogenetics and Evolution 29 (1): 20-30. https://doi.org/10.1016/S1055-7903(03)00088-5

[28] 

Schwarz, G., 1978. Estimating the dimension of a model. Annals of Statistics, 6 (2): 461–464. https://doi.org/10.1214/aos/1176344136

[29] 

Trifinopoulos, J., Nguyen, L-T., von Haeseler, A. & Minh, B. Q., 2013. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acid Research, 44 (1): 232-235. https://doi.org/10.1093/nar/gkw256

[30] 

Yang, Z. 2015. The BPP program for species tree estimation and species delimitation. Current Zoology. 61 (5): 854-865. https://doi.org/10.1093/czoolo/61.5.854

[31] 

Yang, Z. & Rannala, B. 2010. Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences, 107 (20): 9264-9269. https://www.pnas.org/doi/full/10.1073/pnas.0913022107

Appendix 1.–GenBank samples used in the Squalius MT-CYB phylogenetic analyses[Up]

Apéndice 1.– Muestras provenientes del GenBank estudiadas en el análisis filogénetico del MT-CYB para el género Squalius.

Spacies Name After Perea et al.(‍2020) Current Study River. Drainage. Country GenBank Numbers
Squalius aradensis Squalius aradensis Squalius aradensis Bensafrim. Portugal AJ698711
Squalius aradensis Squalius aradensis Squalius aradensis Bordeira. Portugal AJ698451
Squalius aradensis Squalius aradensis Squalius aradensis Quarteira. Quarteira. Portugal AJ852503, AJ852497, DQ003258
Squalius aradensis Squalius aradensis Squalius aradensis Arade. Arade. Portugal AJ852490, AJ852482, AJ852481, AJ852480, AJ583084
Squalius aradensis Squalius aradensis Squalius aradensis Alvor. Porugal AJ852466, AJ852465, AJ583074
Squalius aradensis Squalius aradensis Squalius aradensis Aljezur. Portugal AJ852458, AJ852456, AJ852453, AJ852452, AJ852449
Squalius aradensis Squalius aradensis Squalius aradensis Seixe. Portugal AJ852433, AJ852429
Squalius carolitertii Squalius carolitertii Squalius carolitertii Agueda. Vouga. Portugal MT008596
Squalius carolitertii Squalius carolitertii Squalius carolitertii Vouga. Vouga. Portugal AJ698455
Squalius carolitertii Squalius carolitertii Squalius carolitertii Cávado. Cávado. Portugal MT008594
Squalius carolitertii Squalius carolitertii Squalius carolitertii Corvo. Mondego. Portugal MT008589
Squalius carolitertii Squalius carolitertii Squalius carolitertii Arunca. Mondego. Portugal MT008587
Squalius carolitertii Squalius carolitertii Squalius carolitertii Alva. Mondego. Portugal MT008585
Squalius carolitertii Squalius carolitertii Squalius carolitertii Neiva. Neiva. Portugal MT008583
Squalius carolitertii Squalius carolitertii Squalius carolitertii Alcoa. Alcoa. Portugal MT008582
Squalius carolitertii Squalius carolitertii Squalius carolitertii Ceira. Mondego. Portugal AJ698456
Squalius carolitertii Squalius carolitertii Squalius carolitertii Ave. Ave. Portugal AJ698453
Squalius carolitertii Squalius carolitertii Squalius carolitertii Limia. Limia. Portugal MT008576, HM560182, HM560181
Squalius carolitertii Squalius carolitertii Squalius carolitertii Támega. Duero. Spain MT008569
Squalius carolitertii Squalius carolitertii Squalius carolitertii Mayas. Duero. Spain MT008567
Squalius carolitertii Squalius carolitertii Squalius carolitertii Alberche. Tajo. Spain MT008565, MT008564
Squalius carolitertii Squalius carolitertii Squalius carolitertii Huebra. Duero. Spain MT008558
Squalius carolitertii Squalius carolitertii Squalius carolitertii Adaja. Duero. Spain MT008556
Squalius carolitertii Squalius carolitertii Squalius carolitertii Hormazuelas. Duero. Spain DQ521430
Squalius carolitertii Squalius carolitertii Squalius carolitertii Cega. Duero. Spain DQ521429
Squalius carolitertii Squalius carolitertii Squalius carolitertii Valdavia. Duero. Spain DQ521426
Squalius carolitertii Squalius carolitertii Squalius carolitertii Boedo. Duero. Spain DQ521425
Squalius castellanus Squalius castellanus Squalius castellanus Bullones. Tajo. Spain MT008487
Squalius malacitanus Squalius malacitanus (Atlantic populations) Squalius gaditanus sp. nov. Guadalmina. Guadalmina. Spain KU571594, KU571593, KU571592, KU571591
Squalius malacitanus Squalius malacitanus (Atlantic populations) Squalius gaditanus sp. nov. Genal. Guadiaro. Spain KU571566, KU571565, KU571564, KU571562, KU571561
Squalius malacitanus Squalius malacitanus (Atlantic populations) Squalius gaditanus sp. nov. Guadiaro. Guadiaro. Spain KU571560, KU571559
Squalius malacitanus Squalius malacitanus (Atlantic populations) Squalius gaditanus sp. nov. Guadalevín. Guadiaro. Spain KU571558, KU571556, KU571554, KU571553
Squalius malacitanus Squalius malacitanus (Mediterranean populations) Squalius malacitanus Celemin. Barbate. Spain KU571590, KU571589, KU571588, KU571587, KU571586, KU571584, KU571583, KU571582, KU571581, KU571580
Squalius malacitanus Squalius malacitanus (Mediterranean populations) Squalius malacitanus Vega. Vega. Spain KU571579
Squalius malacitanus Squalius malacitanus (Mediterranean populations) Squalius malacitanus Jara. Jara. Spain KU571578, KU571577, KU571576, KU571574, KU571573, KU571572
Squalius malacitanus Squalius malacitanus (Mediterranean populations) Squalius malacitanus Miel. Miel. Spain KU571571, KU571569, KU571568, KU571567
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Zêzere. Tajo. Portugal MT008492 (mitochondrial closely to S. castellanus), MT008491
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Rivera de Trevijana. Tajo. Spain AJ627329
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Tietar. Tajo. Spain AJ627328
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Sorraia. Tajo. Spain AJ627327
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Sever. Tajo. Spain AJ627326
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Serta. Tajo. Portugal AJ627325
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Pesquero. Tajo. Spain AJ627324, AJ627323
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Huso. Tajo. Spain AJ627322
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Gévalo. Tajo. Spain AJ627321, MT008500
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Arroyo de la Vid. Tajo. Spain AJ627320
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Cofio. Tajo. Spain AJ627319
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Cedena. Tajo. Spain AJ6273178, AJ627317
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Aurela. Tajo. Spain AJ627316
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Almonte. Tajo. Spain AJ627315
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Alburrel. Tajo. Spain AJ627314
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Jerte. Tajo. Spain AJ627313
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Caparro. Tajo. Spain AJ627312
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Arrago. Tajo. Spain AJ627311, MT008498, MT008497
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Acebo. Tajo. Spain AJ627310
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Alagón. Tajo. Spain MT008553, MT008552
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Batuecas. Tajo. Spain MT008495
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Erjas. Tajo. Spain MT008493
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Tajuña. Tajo. Spain MT008508
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Ompolveda. Tajo. Spain MT008506 (mitochondrial of S. castellanus), MT008505
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Lage. Lage. Portugal MT008541, MT008540
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Lis. Lis. Portugal MT008533
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Colares. Colares. Portugal MT008531, MT008530
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Samarra. Samarra. Portugal MT008529
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Lizandro. Lizandro. Portugal MT008526
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Piedra. Ebro. Spain MT008511 (mitochondrial of S. castellanus), MT008509
Squalius pyrenaicus Squalius pyrenaicus (Northern populations) Squalius pyrenaicus Baias. Ebro. Spain DQ521436, DQ521435, DQ521434
Squalius pyrenaicus Squalius pyrenaicus (Sado) Squalius sp. Odivelas. Sado. Portugal AJ627309, AJ627308, AJ627307, MT008534
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Zújar. Guadiana. Spain AJ627306, OP728011
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Gévora. Guadiana. Spain AJ627305
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Sillo. Guadiana. Spain AJ627304, KU571657
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Ruidera. Guadiana. Spain AJ627303, AJ627302
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Matachel. Guadiana. Spain AJ627301
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Estena. Guadiana. Spain AJ627300, AJ6273299, AJ6273297, MT008543
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Azuer. Guadiana. Spain AJ627296, AJ627295
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Arronches. Guadiana. Portugal AJ627294
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Robledillo. Guadalquivir. Spain AJ627293, KU571624, KU571620, KU571619
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Montemayor. Guadalquivir. Spain AJ627292, AJ627291, AJ627290
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Molinos. Guadalquivir. Spain AJ627289
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Manzano. Guadalquivir. Spain AJ627288
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Villar. Odiel. Spain MT008551, MT008550, KU571654
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Guadarranque. Guadiana. Spain MT008547, MT008546
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Esteras. Guadiana. Spain MT008544
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Guadalfeo. Guadalfeo. Spain MT008525, KU571613, KU571612, KU571611
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Cuevas. Velez. Spain MT008523, KU571596
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Sabar. Velez. Spain KU571598, KU571597
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Fresneda. Guadalquivir. Spain MT008519, KU571616, KU571614
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Cala. Guadalquivir. Spain MT008517, KU571639, KU571638, KU571637, KU571636, KU571635, KU571634, KU571633, KU571632, KU571631, KU571630
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Segura. Segura. Spain MT008515, MT008514
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Guadiana. Spain DQ263239, DQ263236
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Calaboza. Guadiana. Spain KU571656
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Montoro. Guadiana. Spain KU571652, KU571651
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Yeguas. Guadiana. Spain KU571649, KU571647, KU571646
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Cabrillas. Guadalquivir. Spain KU571645, KU571643
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Hueznar. Guadalquivir. Spain KU571644, KU571629, KU571628, KU571627
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Viar. Guadalquivir. Spain KU571642, KU571641
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Rivera de Ciudadeja. Guadalquivir. Spain KU571625, KU571622, KU571621
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Guadalete. Guadalete. Spain KU571610, KU571609, KU571608, HM560199, HM560198
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Grande. Guadalhorce. Spain KU571605, KU571604
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Turón. Guadalhorce. Spain KU571600
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Pereilas. Guadalhorce. Spain KU571599
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Almargem. Almargem. Portugal AJ698717
Squalius pyrenaicus Squalius pyrenaicus (Southern populations) Squalius tartessicus sp. nov. Queimado. Queimado. Portugal AJ698715
Squalius valentinus Squalius valentinus Squalius valentinus Micena. Júcar. Spain MT008490
Squalius valentinus Squalius valentinus Squalius valentinus Algar. Algar. Spain MT008489, MT008488, KR871755, KR871753, KR871752, KR871751
Squalius valentinus Squalius valentinus Squalius valentinus Bullent. Serpis. Spain KR871767, KR871728, KR871726, KR871725
Squalius valentinus Squalius valentinus Squalius valentinus Albufera de Valencia. Spain KR871766, KR871765, KR871764, KR871763, KR871762, KR871761, KR871724, KR871723
Squalius valentinus Squalius valentinus Squalius valentinus Tuejar. Turia. Spain KR871759
Squalius valentinus Squalius valentinus Squalius valentinus Grande. Júcar. Spain KR871757
Squalius valentinus Squalius valentinus Squalius valentinus Magro. Júcar. Spain KR871747
Squalius valentinus Squalius valentinus Squalius valentinus Júcar. Júcar. Spain KR871742, KR871741, KR871732, KR871730
Squalius valentinus Squalius valentinus Squalius valentinus Sellent. Júcar. Spain KR871735, KR871734
Squalius valentinus Squalius valentinus Squalius valentinus Cabriel. Júcar. Spain KR871720
Squalius valentinus Squalius valentinus Squalius valentinus Vinalopo. Vinalopó. Spain KR871756
Squalius valentinus Squalius valentinus Squalius valentinus Carbo. Mijares. Spain KR81739, KR871737
Squalius valentinus Squalius valentinus Squalius valentinus Turia. Turia Spain KR871721
Squalius valentinus Squalius valentinus Squalius valentinus Serpis. Serpis. Spain KR871750, KR871743
Squalius torgalensis Squalius torgalensis Squalius torgalensis Mira. Torgal. Portugal DQ061934, GU938832, GU938830, GU938825, GU938822, GU938815, GU938810, GU938790, GU938783, GU938775, GU938763
Squalius torgalensis Squalius torgalensis Squalius torgalensis Torgal. Torgal. Portugal OP728007

Appendix 2.–Variables that most contributed to the PCA to S. pyrenaicus populations. Symbols: Fill Squares, Almonte River (Tajo Drainage), Northern Lineage of S. pyrenaicus. Stars, Jerte River (Tajo Drainage), Northern Lineage. Dots, Grande River (Guadalhorce drainage), Southern Lineage. Circles, Sabar and Cuevas Rivers (Vélez Drainage), Southern Lineage. Plus, Cala River (Guadalquivir Drainage), Southern Lineage. Diamonds Ciudadeja River (Guadalquivir Drainage), Southern Lineage. Abbreviations are defined in Materials and Methods.[Up]

Apéndice 2.– Variables que más contribuyen al ordenamiento en el PCA para todas las poblaciones de S. pyrenaicus. Símbolos: Cuadrados en negro, río Almonte (Cuenca del Tajo), Linaje del Norte. Estrellas, río Jerte (Cuenca del Tajo), Linaje del Norte. Puntos negros, río Grande (Cuenca del Guadalhorce), Linaje del Sur. Círculos, ríos Sabar y Cuevas (Cuenca del Vélez), Linaje del Sur. Más, río Cala (Cuenca del Guadalquivir), Linaje del Sur. Diamantes, río Ciudadeja (Cuenca del Guadalquivir), Linaje del Sur. Las abreviaturas están descritas en el epígrafe de Material y Métodos.

mediumimage/graellsia-79-2-e205-image9.png

Appendix 3.–Eigenvalues and eigenvectors for the first two principal components (PCI-PCII) of 23 morphometric variables for all the Squalius pyrenaicus populations. Acronyms are defined in the Material and methods section. In bold. variables with the highest eigenvectors for each PC.[Up]

Apéndice 3.– Eigenvalores y eigenvectores para los dos primeros componentes principales (PCI-PCII) de 23 variables morfométricas para las poblaciones de Squalius pyrenaicus. Las abreviaturas están descritas en el epígrafe de Material y Métodos. En negrita variables con los eigenvectores más altos para cada CP.

PCI PCII
Eigenvalue 0.057 0.003
% Variance 84.72 4.82
Eig. 2.5% 83.48 4.08
Eig. 97.5% 85.87 5.71
Eigenvectors
SL 0.076 -0.015
PrDD -0.055 0.023
PrPD -0.020 0.216
PrVD 0.174 0.015
PrAD 0.078 0.002
APL 0.082 0.005
DPL 0.302 -0.028
HL -0.155 0.244
PrOL 0.314 0.473
ED 0.171 0.260
PsOL -0.574 0.150
NL 0.030 0.181
HH -0.101 -0.012
PmxL -0.340 0.367
PFL 0.143 -0.185
VFL 0.104 -0.183
DFL -0.100 -0.304
DFH -0.067 -0.210
AFL 0.151 -0.214
AFH -0.272 -0.218
CFL -0.195 -0.302
BD 0.255 -0.058
BLD 0.061 -0.136

Appendix 4.–Variables that most contributed to the PCA to populations of Squalius malacitanus. Triangles, Mediterranean Lineage. Fill Triangles, Atlantic Lineage. Abbreviations are defined in Material and methods.[Up]

Apéndice 4.– Variables que más contribuyen al ordenamiento en el PCA para las poblaciones de Squalius malacitanus. Símbolos: Triángulos, Linaje Mediterráneo. Triángulos en negro, Linaje Atlántico de S. malacitanus. Las abreviaturas están descritas en el epígrafe de Material y métodos.

mediumimage/graellsia-79-2-e205-image10.png

Appendix 5.–Eigenvalues and eigenvectors for the first two principal components (PCI-PCII) of 23 morphometric variables for Squalius malacitanus. Acronyms are defined in the Material and methods section. In bold variables with the highest eigenvectors for each PC.[Up]

Apéndice 5.– Eigenvalores y eigenvectores para los dos primeros componentes principales (PCI-PCII) de 23 variables morfométricas para las poblaciones de Squalius malacitanus. Las abreviaturas están descritas en el epígrafe de Material y métodos. En negrita variables con los eigenvectores más altos para cada CP.

PCI PCII PCIII PCIV
Eigenvalue 0.003 0.002 0.001 0.001
% Variance 23.18 15.81 12.08 8.10
Eig. 2.5% 20.02 13.68 8.04 6.14
Eig. 97.5% 28.08 19.02 14.03 10.29
Eigenvectors
SL 0.169 0.054 -0.086 0.023
PrDD 0.105 0.059 -0.045 0.130
PrPD -0.259 0.031 0.052 -0.029
PrVD 0.035 0.039 -0.020 -0.004
PrAD 0.104 -0.002 -0.070 0.006
APL 0.422 0.234 -0.158 0.010
CPL 0.208 0.152 -0.221 0.122
HL -0.168 0.106 -0.039 -0.050
PrOL -0.470 0.336 -0.219 -0.106
ED -0.254 0.085 0.177 0.187
PsOL -0.041 0.081 -0.029 -0.146
NL -0.100 0.158 0.088 0.004
HH -0.097 -0.141 0.132 0.006
PmxL -0.431 -0.082 -0.071 -0.143
PFL 0.208 0.493 0.269 -0.040
VFL 0.179 0.115 0.166 -0.036
DFL 0.189 -0.328 0.178 -0.767
DFH 0.044 -0.127 0.280 -0.001
AFL 0.099 -0.211 -0.404 -0.001
AFH 0.075 -0.086 0.447 0.364
CFL -0.062 -0.409 0.249 0.239
BD 0.038 -0.314 -0.310 0.307
BLD 0.078 -0.160 -0.257 0.037

Appendix 6.–Number of vertebrae in the different populations: 1, Mediterranean Lineage of S. malacitanus; 2, Atlantic Lineage of S. malacitanus; 3, Southern Lineage of S. pyrenaicus and 4, Northern lineage of S. pyrenaicus.[Up]

Apéndice 6.– Número de vertebras para las diferentes poblaciones: 1, Linaje Mediterráneo de S. malacitanus; 2, Linaje Atlántico de S. malacitanus; 3, Linaje del sur de S. pyrenaicus y 4, Linaje del Norte de S. pyrenaicus.

mediumimage/graellsia-79-2-e205-image11.png

Appendix 7.–Ethmoid bone of Squalius populations under study: A, Mediterranean population of S. malacitanus from type locality; B, Atlantic population of S. malacitanus; C, Northern population of S. pyrenaicus and D, Southern population of S. pyrenaicus. Abbreviations: fr = frontal, et = ethmoid, pm = premaxilla[Up]

Apéndice 7.– Etmoides de las poblaciones estudiadas del género Squalius. A, población mediterránea de S. malacitanus proveniente de la localidad típica. B, población atlántica de S. malacitanus. C, población meridional de S. pyrenaicus. D, población septentrional de S. pyrenaicus. Abreviaturas: fr = frontal, et = etmoides, pm = premaxilar.

mediumimage/graellsia-79-2-e205-image12.png

Appendix 8.–Oral jaws of Squalius populations under study. A, Mediterranean population of S. malacitanus from type locality; B, Atlantic population of S. malacitanus; C, Northern population of S. pyrenaicus and D, Southern population of S. pyrenaicus. Abbreviations: dn = dentary, mx = maxilla, pc = coronoid process, pmx = premaxilla, ppl = palatine process, ppm = posterior process of the dentary.[Up]

Apéndice 8.– Aparato mandibular anterior de las poblaciones estudiadas del género Squalius. A, población mediterránea de S. malacitanus proveniente de la localidad tipo. B, población atlántica de S. malacitanus. C, población meridional de S. pyrenaicus. D, población septentrional de S. pyrenaicus. Abreviaturas: dn = dentario, mx = maxilar, pc = apófisis coronoidea, pmx = premaxilar, ppl = proceso palatino, ppm = apófisis posterior del dentario.

mediumimage/graellsia-79-2-e205-image13.png

Appendix 9.–Basioccipital of Squalius populations under study. A, Mediterranean populations of S. malacitanus from type locality; B, Atlantic populations of S. malacitanus; C, Northern populations of S. pyrenaicus and D, Southern populations of S. pyrenaicus. Abbreviations: fv = lateral processes of the first vertebra, mx = maxilla, ppl = pharyngeal plate, pps = posterior process of the basioccipital, sv = lateral processes of the second vertebra, tr = tripus.[Up]

Apéndice 9.– Basioccipital de las poblaciones estudiadas del género Squalius. A, población mediterránea de S. malacitanus proveniente de la localidad tipo. B, población atlántica de S. malacitanus. C, población meridional de S. pyrenaicus. D, población septentrional de S. pyrenaicus. Abreviaturas: fv = apófisis lateral de la primera vertebra, ppl = placa faríngea, pps = apófisis posterior del basioccipital, sv = apófisis lateral de la segunda vertebra, tr = trípode.

mediumimage/graellsia-79-2-e205-image14.png

Appendix 10.–Pharyngeal teeth of Squalius populations under study. A, Mediterranean populations of S. malacitanus from type locality; B, Atlantic populations of S. malacitanus; C, Northern populations of S. pyrenaicus and D, Southern populations of S. pyrenaicus. Abbreviations: dn = denticulations, lp = lower process of pharyngeal bone, ms = masticatory surface, rt = replacement teeth, up = upper process of pharyngeal bone.[Up]

Apéndice 10.– Dientes faríngeos de las poblaciones estudiadas del género Squalius. A, población mediterránea de S. malacitanus proveniente de la localidad tipo. B, población atlántica de S. malacitanus. C, población meridional de S. pyrenaicus. D, población septentrional de S. pyrenaicus. Abreviaturas: dn = denticulaciones, lp = apófisis inferior del hueso faríngeo, ms = superficie masticatoria, rt = dientes de reemplazo, up = apófisis superior del hueso faríngeo.

mediumimage/graellsia-79-2-e205-image15.png

Appendix 11.–Cleithrum of Squalius populations under study. A, Mediterranean population of S. malacitanus from type locality; B, Atlantic population of S. malacitanus; C, Northern population of S. pyrenaicus and D, Southern population of S. pyrenaicus. Abbreviation: plc, posterior lamina of the cleithrum.[Up]

Apéndice 11.– Cleitro de las poblaciones estudiadas del género Squalius. A, población mediterránea de S. malacitanus proveniente de la localidad típica. B, población atlántica de S. malacitanus. C, población meridional de S. pyrenaicus. D, población septentrional de S. pyrenaicus. Abreviatura: plc, posterior lamina del cleitro.

mediumimage/graellsia-79-2-e205-image16.png

Appendix 12.–Uncorrected-p genetic distances between species and populations for the genus Squalius from the Iberian Peninsula.[Up]

Apéndice 12.– Distancias genética no corregidas entre las diferentes especies y poblaciones del género Squalius en la Penínula Ibérica.

S. aradensis S. pyrenaicus Northen populations S. pyrenaicus Sado S. pyrenaicus Southern populations S. carolitertii S. castellanus S. malacitanus Atlantic populations S. malacitanus Mediterranean populations S. valentnius S. torgalensis
S. aradensis 0.6
S. pyrenaicus Northern populations 10.2 0.1
S. pyrenaicus Sado 10.8 2.2 0.12
S. pyrenaicus Southern populations 10.6 1.6 2.2 0.9
S. carolitertii 10.2 5.9 6.3 6 0.7
S. castellanus 11 6.5 6.9 6.4 4.2 0.8
S. malacitanus Atlantic populations 10.9 8.5 8.4 8.6 7.9 8.7 0.7
S. malacitanus Mediterranean populations 10.4 7.6 7.8 7.6 7.1 7.3 4.2 0.5
S. valentinus 11.1 2.9 3.0 2.7 6.3 6.9 8.6 7.4 0.4
S. torgalensis 6 11.5 11.9 11.6 10.9 11.8 11.4 11.9 12.1 0.3

Appendix 13.–Autapomorphies in the mitochondrial cytochrome b gene detected for the genus Squalius. Transversions are indicated with *.[Up]

Apéndice 13.– Autapomorfías para el gen mitocondrial citocromo b en el género Squalius. Transversiones son indicadas con *.

Species 141 145 180 207 264 282 288 309 312
S. aradensis G C A C C T A T T
S. pyrenaicus Northern populations C C A C C T A T T
S. pyrenaicus Sado C C A C C T A T T
S. pyrenaicus Southern populations C C A C C T A T T
S. carolitertii C C A/G C C T A T T
S. castellanus C C T C C T A T T
S. malacitanus Atlantic populations C C A C C T A T T
S. malacitanus Mediterranean populations C C A C C T G T T
S. valentinus C T A C C T A C T
S. torgalensis A C A T A C A T C
Species 327 333 354 423 429 457 465 507 513
S. aradensis T A A A C G C C C
S. pyrenaicus Northern populations T A C A C G C C C
S. pyrenaicus Sado T A C A C G C C C
S. pyrenaicus Southern populations T A C A C G C C C
S. carolitertii T A C A C G C T C
S. castellanus T G C A C G T C C
S. malacitanus Atlantic populations C A C G C G C C C
S. malacitanus Mediterranean populations T A C/T A C T C C C
S. valentinus T A C A C G C C T
S. torgalensis T A C A T G C C C
Species 546 558 630 633 634 675 696 718 748
S. aradensis C A C A A A A A C
S. pyrenaicus Northern populations C A A/G C/T A A A A C
S. pyrenaicus Sado C A A C A A A A C
S. pyrenaicus Southern populations C A A C A A A A C
S. carolitertii C A G G A A A A C
S. castellanus C A G C A/G A A A T
S. malacitanus Atlantic populations C A G A A A A A C
S. malacitanus Mediterranean populations C A G A A A A A C
S. valentinus T A A C A A A A C
S. torgalensis C G A/G A T T G G C

Appendix 14.–Localities of Squalius tartessicus in MNCN_ICTIO Collection.[Up]

Appendix 14.– Localidades de Squalius tartessicus en la Colección de Ictiología del MNCN.

Guadalquivir Drainage

MNCN_ICTIO 267479-‍267480, Albardado River, Bélmez, Córdoba, Spain, 38.253096, -5.164937, Leg., González, J.A., I. Doadrio, 20.3.2000. MNCN_ICTIO 272848-‍272849, Cabrillas River, Villaviciosa de Córdoba, Códoba, Spain, 38.007210, -5.067791, Leg., González, J.L; Prieto, B; Herrera, J., 26.5.2009. MNCN_ICTIO 272656-‍272714, Cala River, Santa Olalla de Cala, Huelva, Spain, 37.959673, -6.222448, Leg., Doadrio, I.; Garzón-Heydt, P., 19.4.2009. MNCN_ICTIO 53479-‍53496, Castril River, Cortes de Baza, Granada, Spain, 37.678218, -2.786500, Leg., Bernat, Y.; Cubo, J., 14.6.1989. MNCN_ICTIO 267207-‍267214, Corumbel River, Paterna del Campo, Sevilla, Spain, 37.473507, -6.458322, Leg., Doadrio, I.; González, J.L.; Garzón-Heydt, P.; Prieto, B., 18.5.2009. MNCN_ICTIO 272254-‍272270, de Ciudadeja River, Navas de la Concepción, Sevilla, Spain, 37.917956, -5.480368, Leg., González, J.L; Prieto, B; Herrera, J, 26.5.2009. MNCN_ICTIO 59099-‍59104, de Garcíez River, Jimena, Jaén, Spain, 37.854004, -3.452911, Leg., Bernat, Y.; Cubo, J., 22.9.1989. MNCN_ICTIO 157067-‍157078, de la Mesta River, Villapalacios, Albacete, Spain, 38.570836, -2.634844, Leg., Doadrio, I.; González, J.A.; Ambrosio, L., 30.10.1997. MNCN_ICTIO 43420-‍43421, de la Rocina River, El Rocío, Huelva, Spain, 37.145579, -6.547194, Leg., Domínguez, L., 24.2.1985. MNCN_ICTIO 286685-‍286690, de las Buenas Hierbas River, Azuel, Córdoba, Spain, 38.340363, -4.414474, Leg., 18.3.2000. MNCN_ICTIO 49416-‍49424, de las Yeguas River,Fuencaliente, Ciudad Real, Spain, 38.394627, -4.295620, Leg., Doadrio, I.; Cubo, J., 13.3.1989. MNCN_ICTIO 57873-‍57875, de las Yeguas River, Venta de Azuel, Jaén, Spain, 38.363134, -4.322248, Leg., Doadrio, I.; Cubo, J., 4.9.1987. MNCN_ICTIO 42727-‍42728, de San Marcos River, Fontanarejo, Ciudad Real, Spain, 39.191816, -4.539761, Leg., Barrachina, P., 17.7.1984. MNCN_ICTIO 158176-‍158180, del Buey River, Pozo de la Serna, Ciudad Real, Spain, 38.731251, -3.187420, Leg., Gutiérrez, B.; Ambrosio, L., 19.11.1995. MNCN_ICTIO 53499-‍53504, Fardes River, Villanueva de las Torres, Granada, Spain, 37.554051, -3.088891, Leg., Bernat, Y.; Cubo, J., 13.6.1989. MNCN_ICTIO 242284, Fresneda River, El Viso del Marqués, Ciudad Real, Spain, 38.585604, -3.657199, Leg., Doadrio, I. & cols, 26.2.2000. MNCN_ICTIO 158151-‍158161, Fresneda River, Frinca la Freneda. Viso del Marqués, Ciudad Real, Spain, 38.585604, -3.657199, Leg., Gutiérrez, B.; Ambrosio, L., 20.11.1995. MNCN_ICTIO 248239, Fresneda River, Huertezuelas, Ciudad Real, Spain, 38.494465, -3.667806, Leg., Doadrio, I.; Ornelas, P.; Perea, S., 19.5.2004. MNCN_ICTIO 114021-‍114024, Grande River, El Centenillo, Jaén, Spain, 38.346026, -3.711763, Leg., Doadrio, I.; Garzón-Heydt, P., 6.7.1994. MNCN_ICTIO 152919, Grande River, El Centenillo, Jaén, Spain, 38.346026, -3.711763, Leg., Doadrio, I.; Garzón-Heydt, P., 4.12.1992. MNCN_ICTIO 54480-‍54489, Guadalbarbo River, Obejo, Córdoba, Spain, 38.135581, -4.855818, Leg., Doadrio, I.; Cubo, J.,19.4.1989. MNCN_ICTIO 138456, Guadalentin River, Peal del Becerro, Jaén, Spain, 37.869390, -2.880686, Leg., IFIE, 13.10.1924. MNCN_ICTIO 69793-‍69794, Guadalmar River, Puebla de Alcocer, Badajoz, Spain, 39.024035, -5.126504, Leg., Doadrio, I.; Cubo, J., 22.4.1988. MNCN_ICTIO 271901, Guadalmena River, Albadalejo, Ciudad Real, Spain, 38.514549, -2.785715, Leg., González, J.L.; Prieto, B.; Herrera, J., 5.7.2009. MNCN_ICTIO 126470-‍126477, Guadalmena River, Alcaraz, Albacete, Spain, 38.667702, -2.566078, Leg., Doadrio, I.; Ambrosio, L., 23.10.1996. MNCN_ICTIO 157490-‍157540, Guadalmena River, Bienservida (Puente de la carretera Bienservida-Albadejo), Albacete, Spain, 38.555159, -2.731737, Leg., González, J.A.; Ambrosio, L., 31.10.1996. MNCN_ICTIO 157914-‍157998, Guadalmena River, Villapalacios, Albacete, Spain, 38.590866, -2.669143, Leg., González, J.A.; Ambrosio, L., 30.10.1996. MNCN_ICTIO 126254-‍126273, Guadalimar River, Villaverde de Guadalimar, Albacete, Spain, 38.451992, -2.517728, Leg., Alonso, F., 28.3.1996. MNCN_ICTIO 24916-‍24923, Guadalquivir River, El Puntal, Sevilla, Spain, 37.257238, -6.060055, Leg., Lozano, L., 30.4.1948. MNCN_ICTIO 53548, Guardal River, San Clemente (Sierra Moncayo), Granada, Spain, 37.757611, -2.668137, Leg., Bernat, Y.; Cubo, J., 15.6.1989. MNCN_ICTIO 197669, Guarrizas River, Aldequemada, Jaén, Spain, 38.408030, -3.384138, Leg., Doadrio, I., 7.5.1978. MNCN_ICTIO 127621-‍197622, Jándula River, Andújar, Jaén, Spain, 38.149855, -4.015852, Leg.,Doadrio, I., 4.10.1980. MNCN_ICTIO 18760, Majavacas River, Fuente Obejuna, Córdoba, Spain, 38.290298, -5.416990, Leg., Doadrio, I., 26.5.1999. MNCN_ICTIO 54675-‍54676, Montoro River, La Solanilla, Ciudad Real, Spain, 38.446805, -3.940565, Leg., Doadrio, I.; Cubo, J., 20.4.1989. MNCN_ICTIO 53584-‍53589, Orce River, Llanos de Orce, Granada, Spain, 37.728568, -2.497680, Leg., Bernat, Y.; Cubo, J., 15.6.1989. MNCN_ICTIO 240495-‍240507, Robledillo River, Solana del Pino, Ciudad Real, Spain, 38.422477, -4.026718, Leg., Doadrio, I., 19.11.1994. MNCN_ICTIO 24982, Rumblar River, Baños de la Encina, Jaén, Spain, 38.424256, -4.038561, Leg., Cobo, J.M., 10.4.1974. MNCN_ICTIO 157737-‍157746, Turruchel River, Bienservida, Albacete, Spain, 38.512802, -2.615983, Leg., González, J.A.; Ambrosio, L., 30.10.1996. MNCN_ICTIO 24433-‍24440, Viar River, Pallares, Badajoz, Spain, 38.059507, -5.997013, Leg., Barrachina, P.; Sunyer, C., 28.12.1984. MNCN_ICTIO 266128, Yeguas River, Azuel, Córdoba, Spain, 38.362725, -4.321812, Leg., Doadrio, I.; González, J.L.; Garzón-Heydt, P.; Prieto, B., 19.5.2009. MNCN_ICTIO AT 17090 - 17092, Hueznar, River, El Pedroso. Sevilla, Spain, 30S 259132, 4193764, Leg., I. Doadrio, J.L.González, Gema, P.Garzón-Heydt. MNCN_ICTIO AT 17181, Montoro River, Ventillas. Ciudad Real, Spain, 30s379879, 4262773, Leg., I. Doadrio, J.L.González, Gema, P.Garzón-Heydt. MNCN_ICTIO AT 17206-‍17223, Cabrera River, Casas de Montealegre.Andujar. Jaén, Spain, 30S 404430, 4231849, Leg., I.Doadrio, J.L.González, P.Garzón-Heydt. MNCN_ICTIO AT 21560 - 21563, Cabrera, River, Lugar Nuevo. Andujar. Jaén, Spain, 38.193206, -4.094899.

Guadiana Drainage

MNCN_ICTIO 137187-‍137195, Albarregas River, Mérida, Badajoz, Spain, 8.564224, -71.191819, Leg., IFIE, 21.6.1947. MNCN_ICTIO 153012-‍153043, Alcarrache River, Higuera de Vargas, Badajoz, Spain, 38.450813, -6.996069, Leg., Doadrio, I.; Cubo, J., 21.4.1988. MNCN_ICTIO 24821, Alcollarín River, Alcollarín, Badajoz, Spain, 39.262935, -5.760773, Leg., Barrachina, P.; Sunyer, C., 29.12.1984. MNCN_ICTIO 158127, Alcudia River, Alamillo, Ciudad Real, Spain, 38.713097, -4.815668, Leg., Doadrio, I., 22.11.1995. MNCN_ICTIO 25013-‍25067, Aljucén River, Aljucén , Badajoz, Spain, 39.045322, -6.348508, Leg., Doadrio, I., 21.7.1984. MNCN_ICTIO 24341-‍24360, Ardila River, Ardila, Badajoz, Spain, 38.169787, -6.417826, Leg., Barrachina, P.; Sunyer, C., 27.12.1984. MNCN_ICTIO 272949, Ardila River, Oliva de la Frontera, Badajoz, Spain, 38.230073, -6.887153, Leg., Doadrio, I.; González, J.L; Garzón-Heydt, P., 19.4.2009. MNCN_ICTIO 25333, Ardila River, Valuengo, Badajoz, Spain, 38.286945, -6.731510, Leg., Barrachina, P.; Sunyer, C., 27.11.1984. MNCN_ICTIO 105782-‍105788, Brezoso River, Cabañeros, Ciudad Real, Spain, 39.347835, -4.361869, Leg., Doadrio, I.; González, J.A.; Perdices, A., 4.3.1992. MNCN_ICTIO 268965, Bullaque River, Retuerta de Bullaque, Ciudad Real, Spain, 39.428346, -4.365585, Leg., Doadrio, I.; González, J.L.; Garzón-Heydt, P.; Prieto, B., 16.5.2009. MNCN_ICTIO 240511-‍240512, Cigüela River, Horcajada de la Torre, Cuenca, Spain, 40.041476, -2.571649, Leg., Doadrio, I.,8.10.2001. MNCN_ICTIO 270667-‍270668, de Calaboza River, Rosal de la Frontera, Huelva, Spain, 37.914358, -7.200447, Leg., Doadrio,I Garzón-Heydt, P. Jl. González, 18.4.2009. MNCN_ICTIO 187529-‍187538, del Madroño River, Peraleda de Zaucejo, Badajoz, Spain, 38.420431, -5.577042, Leg., Doadrio, I., 28.5.1999. MNCN_ICTIO 187734-‍187756, Del Moral River, Ribera del Fresno, Badajoz, Spain, 38.509247, -6.263701, Leg., Doadrio, I., 27.5.1999. MNCN_ICTIO 39776-‍39792, del Sillo River, Cumbres de San Bartolomé, Huelva, Spain, 38.095049, -6.711542, Leg., Barrachina, P. I. Doadrio, J. Cubo, 9.8.1984. MNCN_ICTIO 283449-‍283456, del Sillo River, Encinasola, Huelva, Spain, 38.119189, -6.831598, Leg., J.L. González; I. Doadrio; P. Garzón-Heydt, 28.5.2010. MNCN_ICTIO 69802-‍69803, Estena River, Bohonal, Ciudad Real, Spain, 39.458641, -4.808416, Leg., Doadrio, I.; Cubo, J., 23.4.1988. MNCN_ICTIO 264613, Estena River, Navas de Estena, Ciudad Real, Spain, 39.496530, -4.541259, Leg., Doadrio, I.; Perea, S., 21.7.2006. MNCN_ICTIO 126161-‍126162, Estenilla River, Anchuras, Ciudad Real, Spain, 39.458641, -4.808416, Leg., Doadrio, I., 5.10.1995. MNCN_ICTIO 24720-‍24723, Estenilla River, Valdeazores, Badajoz, Spain, 39.474254, -4.792097, Leg., Sunyer, C., 3.5.1985. MNCN_ICTIO 253961-‍253967, Esteras River, Baterno, Badajoz, Spain, 38.878116, -4.930531, Leg., Doadrio, I.; Ornelas, P.; Perea, S., 28.4.2004. MNCN_ICTIO 248084-‍248085, Esteras River, Saceruela, Ciudad Real, Spain,38.950527, -4.651952, Leg., Doadrio, I.; Ornelas, P.; Perea, S., 22.5.2004. MNCN_ICTIO 268912-‍268922, Esteras River, Valdemanco de Esteras, Ciudad Real, Spain, 38.906068, -4.795259, Leg., Doadrio, I.; González, J.L.; Garzón-Heydt, P.; Prieto, B., 16.5.2009. MNCN_ICTIO AT 16961, Esteras, River, Siruela. Badajoz, Spain, 30S 332593, 4305245, Leg., I. Doadrio, J.L.González, G. Solis, P.Garzón-Heydt. MNCN_ICTIO 44414, Gévora River, Alburquerque. Ermita de Nuestra Señora de Carrión, Badajoz, Spain, 39.182827, -7.033341, Leg., Doadrio, I.; Elvira, B., 8.5.1987. MNCN_ICTIO 24730-‍24384, Gévora River, La Codosera, Badajoz, Spain, 39.211948, -7.141414, Leg., Barrachina, P.; Sunyer, C., 3.5.1985. MNCN_ICTIO 218261, Gébalo River, Alcaudete de la Jara, Toledo, Spain. 39.794379, -4.868787, Leg., Doadrio. I.; Ambrosio, L., 15.3.2000. MNCN_ICTIO 24316-‍24330, Guadajira River, Solana de Barros, Badajoz, Spain, 38.730777, -6.531945, Leg., Barrachina, P.; Sunyer, C., 2.5.1985. MNCN_ICTIO 253610-‍253617, Guadalemar River, Garbayuela, Badajoz, Spain, 39.032746, -5.018206, Leg., Doadrio, I.; Ornelas, P.; Perea, S., 24.4.2004. MNCN_ICTIO 24331-‍24340, Guadalemar River, Fuenlabrada de los Montes, Badajoz, Spain, 39.090419, -4.944551, Leg., Barrachina, P.; Sunyer, C., 16.7.1984. MNCN_ICTIO 25315, Guadalupejo River, Guadalupe, Cáceres, Spain, 39.441082, -5.312282, Leg., Sunyer, C., 1.5.1985. MNCN_ICTIO 54499-‍54506, Guadámez River, Valle de la Serena, Badajoz, Spain, 38.699075, -5.823548, Leg.,Doadrio, I.; Cubo, J., 18.4.1989. MNCN_ICTIO 269976-‍270014, Guadarranque River, Alia, Cáceres, Spain, 39.507865, -5.164098, Leg., Doadrio, I.; González, J.L.; Garzón-Heydt, P.; Prieto, B., 15.5.2009. MNCN_ICTIO 24945-‍24975, Guadiana River, Daimiel, Ciudad Real, Spain, 39.149038, -3.699871, Leg., Sánchez Bermejo, G., 27.10.1913. MNCN_ICTIO 24407, Guadiana River, Mérida, Badajoz, Spain, 38.923038, -6.427833, Leg., Barrachina, P.; Sunyer, C., 24.7.1984. MNCN_ICTIO 25279-‍25280, Guadiana River, Helechosa, Badajoz, Spain, 39.330040, -4.901371, Leg., Doadrio, I., 29.6.1981. MNCN_ICTIO 267468, Jabalón River, Bazán, Ciudad Real, Spain, 38.657495, -3.435319, Leg., Perea, S., 23.9.2004. MNCN_ICTIO 215384, Jualón River, Palomares del Campo, Cuenca, Spain, 39.961477, -2.589338, Leg., Doadrio, I., 11.6.1996. MNCN_ICTIO 24701-‍24702, Matachel River, Alange, Badajoz, Spain, 38.670796, -6.199076, Leg., Barrachina, P.; Sunyer, C., 1.5.1985. MNCN_ICTIO 24600-‍24610, Matachel River, Hornachos, Badajoz, Spain, 38.058660, -5.173617, Leg. Barrachina, P.; Sunyer, C., 28.12.1984. MNCN_ICTIO 19671-‍24702, Molinillo River, El Molinillo, Ciudad Real, Spain, 39.466056, -4.222432, Leg., I. Doadrio, 25.7.1976. MNCN_ICTIO 24704-‍24707, Ortigas River, Magacela, Badajoz, Spain, 38.843604, -5.736454, Leg., Barrachina, P.; Sunyer, C., 29.12.1984. MNCN_ICTIO 126132-‍126133, Piedrala River, Porzuna, Ciudad Real, Spain, 39.247090, -4.170298, Leg., Doadrio, I., 6.10.1995. MNCN_ICTIO 24489-‍24498, PijotillaRiver, Retamal, Badajoz, Spain, 38.752292, -6.644393, Leg., Barrachina, P.; Sunyer, C., 28.12.1984. MNCN_ICTIO 248057-‍248058, Quejigares River, Fontanosa, Ciudad Real, Spain, 38.745863, -4.531601, Leg., Doadrio, I.; Garzón-Heydt, P.; Ornelas, P.; Perea, S., 22.5.2001. MNCN_ICTIO 24489-‍24498, Retín River, Llera, Badajoz, Spain, 38.424136, -6.092681, Leg., Doadrio, I.; Cubo, J., 19.4.1989. MNCN_ICTIO 248057-‍248058, Riansares River, Los Huelves, Cuenca, Spain, 39.954101, -3.012588, Leg., Doadrio, I., 12.6.1996. MNCN_ICTIO 211214-‍211225, Ruecas River, Cañamero, Cáceres, Spain, 39.379431, -5.377607, Leg., Doadrio, I.; González, J.L.; Garzón-Heydt, P.; Prieto, B., 15.5.2009. MNCN_ICTIO 240507, Ruecas River, Logrosán (Villanueva de la Serena), Cáceres, Spain, 39.305479, -5.458731, Leg., Doadrio, I.; Martínez, E.; Corcuera, A., 20.3.2003. MNCN_ICTIO 253685, Siruela River, Tamurejo, Badajoz, Spain, 39.012147, -4.947007, Leg., Doadrio, I.; Ornelas, P.; Perea, S., 28.4.2004. MNCN_ICTIO 25650-‍25654, Tablillas River, Veredilla, Ciudad Real, Spain, 38.582982, -4.360105, Leg., Doadrio, I.; Cubo, J., 13.3.1989. MNCN_ICTIO 40057-‍40061, Tamujar River, Almadén, Ciudad Real, Spain, 38.770204, -4.901411, Leg., Barrachina, P. I. Doadrio, J. Cubo, 5.7.1984. MNCN_ICTIO 190164-‍190174, Usagre River, Hinojosa del Valle, Badajoz, Spain, 38.462778, -6.128719, Leg., Doadrio, I., 27.5.1999. MNCN_ICTIO 40072-‍40076, Valdeazogues River, Almadén, Ciudad Real, Spain, 38.743215, -4.834095, Leg.,Barrachina, P., I. Doadrio, 5.7.1984. MNCN_ICTIO 253534-‍253535, Valdeazogues River, Almadenejos, Ciudad Real, Spain, 38.755547, -4.704267, Leg., Doadrio, I.; Ornelas, P.; Perea, S., 28.4.2004. MNCN_ICTIO 158497-‍158502, Valdeazogues River, Chillón, Ciudad Real, Spain, 38.727068, -4.869323, Leg., Gutiérrez, B.; Blazquez, Luis Ambrosio, 7.11.1995. MNCN_ICTIO 126530-‍126540, Valdehornos River, Navalpino, Ciudad Real, Spain, 39.260746, -4.610820, Leg., Doadrio, I., 5.10.1995. MNCN_ICTIO 211435-‍211443, Valdejudíos River, Carrascosa del Campo, Cuenca, Spain, 40.012791, -2.738227, Leg., Doadrio, I., 12.6.1996. MNCN_ICTIO 114946, Valdejudíos River, Saelices, Cuenca, Spain, 39.967090, -2.744416, Leg., Doadrio, I., 18.2.1996. MNCN_ICTIO 79313-‍79329, Zancara River, Zafra de Záncara, Cuenca, Spain, 39.895067, -2.560379, Leg., Doadrio, I.; González, J.A.; Perdices, A., 3.3.1992. MNCN_ICTIO 45272, Zapatón River, Botoa, Puente Albarragena, Badajoz, Spain, 39.045590, -6.906453, Leg., Doadrio, I.; Elvira, B., 8.5.1987. MNCN_ICTIO 212588-‍212592, Zujar River, Cabeza del Buey, Badajoz, Spain, 38.676974, -5.172985, Leg., Doadrio, I., 2.6.1999. MNCN_ICTIO 187881-‍187886, Zujar River, Peraleda del Zaucejo, Badajoz, Spain, 38.451395, -5.539105, Leg., Doadrio, I., 28.5.1999. MNCN_ICTIO 7276-‍212592, de la Cagurria Spring, Ossa de Montiel, Albacete, Spain, 38.881602, -2.764065, Leg., Doadrio, I.; González, J.A.; Perdices, A., 7.4.1992. MNCN_ICTIO AT 16643, Murtigas River, Valles de Carrasco.Huelva, Spain, 29s695261, 4211596, Leg., I.Doadrio, J.L.González, P.Garzón-Heydt. MNCN_ICTIO 268534-‍268536, Guadalmez River, Guadalmez, Cuidad Real, Spain, 38.702859, -4.920903, Leg., Doadrio, I.; González, J.L.; Garzón-Heydt, P.; Prieto, B., 17.5.2009. MNCN_ICTIO 267879-‍267880, Guadalmez River, San Benito, Badajoz, Spain, 38.547056, -4.672129, Leg., Doadrio, I.; González, J.L.; Garzón-Heydt, P.; Prieto, B., 17.5.2009. MNCN_ICTIO AT 21610 - 21620, El Chorro, River, Navas de Estena. Ciudad Real, Spain, 39.488724, -4.532027.

Odiel Drainage

MNCN_ICTIO 24927-‍24937, Cascabelero River, Villanueva de las Cruces, Huelva, Spain, 37.620888, -7.022039, Leg., Doadrio, I., 12.4.1979. MNCN_ICTIO 243711-‍243718, del Villar River, Zalamea la Real, Huelva, Spain, 37.689514, -6.652147, Leg., Doadrio, I., 24.3.2002. MNCN_ICTIO 196712-‍196715, Odiel River, Campofrío, Huelva, Spain, 37.800374, -6.552634, Leg., Doadrio, I., 9.12.1979. MNCN_ICTIO 253684-‍253685, Tamuja River, Calañas, Huelva, Spain, 37.672534, -6.917234, Leg., Doadrio, I., 12.4.1979. MNCN_ICTIO 25282-‍25297, Tinto River, Cerca de Berrocal, Huelva, Spain, 37.613033, -6.550242, Leg., Domínguez Nevado, L., 26.1.1991.

Segura Drainage

MNCN_ICTIO 157696-‍157704, de Bogarra River, Las Mohedas, Albacete, Spain, 38.603804, -2.252087, Leg., González, J.A.; Ambrosio, L., 31.10.1996. MNCN_ICTIO 25650-‍25654, Segura River, Orihuela, Alicante, Spain, 38.085164, -0.946064.

Vélez Drainage

MNCN_ICTIO 280678-‍280689, de la Cueva River, Riogordo, Málaga, Spain, 36.927500, -4.296446, Leg., I. Doadrio, J.L. González, P. Garzón-Heydt, B. Prieto, 14.6.2009. MNCN_ICTIO 211435-‍211443, Vélez River, Viñuelas, Málaga, Spain, 36.884624, -4.146318, Leg., Doadrio, I.; Garzón-Heydt, P., 22.10.1978. MNCN_ICTIO AT 17877- 17892, Sabar River, Sabar. Málaga, Spain, 30s388774, 4089165, Leg., I. Doadrio, J.L.González, P.Garzón-Heydt.

Guadalhorce Drainage

MNCN_ICTIO 25586, del Burgo River, El Burgo, Málaga, Spain, 36.790234, -4.941212, Leg., Doadrio, I.; Garzón-Heydt, P., 24.10.1978. MNCN_ICTIO 212312, Fahala River, Alhaurín el Grande, Málaga, Spain, 36.689047, -4.685710, Leg., Doadrio, I.; Garzón-Heydt, P., 6.3.2000. MNCN_ICTIO 69911, Guadalhorce River, Cártama, Málaga, Spain, 36.729350, -4.602957, Leg., Doadrio, I.; Garzón-Heydt, P., 10.7.1984. MNCN_ICTIO 263947-‍263954, Turón River, El Burgo, Málaga, Spain, 36.787862, -4.952219, Leg., Doadrio, I.; Perea, S., 14.3.2006. MNCN_ICTIO AT17308-17329, Grande River, Alozaina, Málaga, Spain, 36.701739, -4.881667, Leg. Doadrio, I.; Garzón-Heydt, P., G. Solis, J.L. Gonález, 24.VI.2010.

Guadalete Drainage

MNCN_ICTIO 264042-‍264046, Guadalete River, Zahara, Cádiz, Spain, 36.807310, -5.328511, Leg., Doadrio, I.; Perea, S., 18.2.2006. MNCN_ICTIO AT 17442 - 17457, Guadalete River, Puerto Serrano. Cádiz, Spain, 30s272604, 4089355, Leg., I. Doadrio, J.L.González, Gema, P.Garzón-Heydt. MNCN_ICTIO 25071-‍25078, Guadalporcún River, Olvera, Cádiz, Spain, 36.924825, -5.280355, Leg., Doadrio, I.; Garzón-Heydt, P., 27.3.1983. MNCN_ICTIO 197621-‍197622, Majaceite River, El Bosque, Cádiz, Spain, 36.771175, -5.491703, Leg., Garzón-Heydt, P. Doadrio,I, 26.10.1978.

Guadalfeo Drainage

MNCN_ICTIO 24765, Guadalfeo River, Motril, Granada, Spain, 36.884244, -3.416690, Leg., Lozano, L., 13.8.1930. MNCN_ICTIO 19219-‍192191, Guadalfeo River, Órgiva, Granada, Spain, 36.890440, -3.377251, Leg., Doadrio, I.; Garzón-Heydt, P., 3.10.1978. MNCN_ICTIO 195961, Guadalfeo River, Vélez de Benaudalla, Granada, Spain, 36.827457, -3.522552, Leg., Doadrio, I.; Garzón-Heydt, P., 21.10.1978.