ON SOME FEATURES OF THE BIOLOGY OF THE RED SNAIL-NESTING BEE, RHODANTHIDIUM STICTICUM (FABRICIUS, 1787): PHENOLOGY, FLOWER PREFERENCE, USE OF SHELLS, FLIGHT ABILITY AND TERRITORIAL BEHAVIOUR

Daniel Romero1,*, Pablo Vargas2 & Concepción Ornosa3

1 Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, University Complutense of Madrid, Spain. Email: danielromero@ucm.es – ORCID iD: https://orcid.org/0000-0002-5583-5289
2 Real Jardín Botánico, CSIC, Madrid, Spain. Email: vargas@rjb.csic.es – ORCID iD: https://orcid.org/0000-0003-4502-0382
3 Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, University Complutense of Madrid, Spain. Email: paddy@bio.ucm.es – ORCID iD: https://orcid.org/0000-0003-0615-0790

*Corresponding author: danielromero@ucm.es

ABSTRACT

The ecological and behavioural aspects of most Mediterranean bees (phenology, solitary or social behaviour, mating, territoriality, nesting and plant specialization) are still poorly known or have not been described in depth, besides a few species. That is the case of the red snail-nesting bee, Rhodanthidium sticticum (Hymenoptera, Megachilidae), a Mediterranean, solitary and territorial species whose biology has been described very superficially. Here, we deal with its phenology, use of snail shells other than for nesting, plant visitation and polylecty, flight ability, territoriality and mating. These results are based on our own field observations. The biology of R. sticticum is similar to that of other Anthidiini. It is a spring species, univoltine, very active during sunny days, in the central hours. During adverse weather conditions it can be found sheltering inside snail shells, several individual sharing the same shell. Despite its polylecty, it shows preference for melittophilous plants, especially from the genus Antirrhinum. Males defend their territories against other conspecific males and individuals of other species, as a way of ensuring their own reproductive success.

Keywords: Rhodanthidium sticticum, Megachilidae, Hymenoptera, behaviour, nesting, territoriality.

RESUMEN

Algunos rasgos de la biología de la abeja roja de los caracoles, Rhodanthidium sticticum (Fabricius, 1787): fenología, preferencia floral, uso de conchas, capacidad de vuelo y comportamiento territorial

La ecología y el comportamiento de la mayoría de las especies de abejas mediterráneas (fenología, comportamiento solitario o social, apareamiento, nidificación, especialización en plantas) son aún poco conocidos o no han sido descritos de manera profunda, salvo para contadas especies. Tal es el caso de la abeja roja de los caracoles, Rhodanthidium sticticum (Hymenoptera, Megachilidae), una especie mediterránea, solitaria y territorial cuya biología ha sido tratada muy superficialmente. En este trabajo se describe su fenología, el uso que hace de conchas de caracol más allá de la nidificación, la polilectia y las plantas que visita, su capacidad de vuelo, la territorialidad y el apareamiento, todo ello basado en observaciones de campo propias. La biología de R. sticticum es parecida a la de otros Anthidiini, pero con particularidades. Es una especie primaveral, univoltina, muy activa en días soleados durante las horas centrales. Cuando las condiciones meteorológicas son adversas se refugia en el interior de conchas de caracol, pudiendo compartirlas varios individuos (de la misma especie o incluso de otras). A pesar de ser claramente polilectica, muestra preferencia por plantas con flores melitófilas, en especial del género Antirrhinum. Los machos defiende sus territorios, tanto contra otros machos conspecificos como contra otros, con un comportamiento que permite asegurar su propio éxito reproductivo.

Palabras clave: Rhodanthidium sticticum, Megachilidae, Hymenoptera, comportamiento, nidificación, territorialidad.

Copyright: © 2021 SAM & CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License.
Introduction

Bees (Hymenoptera, Apoidea) are widely known for their predominant role in pollination of wild plants and crops. Besides their importance in plants reproduction, bees also display an incredible array of behaviours concerning sociality, mating, territoriality, nesting and plant specialization (Michener, 2007). These biological aspects are partially or completely unknown for most of the species, but they are indispensable to analyze conservation status, to develop protection and conservation plans and to ensure and improve crops pollination, among other things.

The red snail shell nesting bee, *Rhodanthidium sticticum* (Fabricius, 1787) (Hymenoptera, Megachilidae), is a Mediterranean solitary bee species (Ornosa et al., 2008), best known for its striking red colour and its nesting behaviour, inside empty snail shells, used for sheltering, too (Romero et al., 2020a). The use of Gastropod shells by bees has mostly been described for nesting, but very rarely for sheltering, and it is exclusive from the family Megachilidae (Pasteels, 1977; Gess & Gess, 1999, 2008; Moreno-Rueda et al., 2008, Müller et al., 2018; Kuhlmann et al., 2011; Müller & Mauss, 2016). Shells offer protection against different meteorological agents, such as rain, extreme temperatures or dessication (Moreno-Rueda et al., 2020) and provide the perfect hiding for the larvae. Besides *R. sticticum*, three more species of *Rhodanthidium* (*R. infuscatum* (Erichson, 1835), *R. septemdentatum* (Latreille, 1809) and *R. siculum* (Spinola, 1838)) build their nests inside snail shells (Dusmet, 1908; Pasteels, 1977; Erbar & Leins, 2017). As they are obliged shell-nesters (Bosch et al., 1993), the presence of empty shells and the distribution of the appropriate Gastropod species influence the distribution of the *Rhodanthidium* bees themselves (Romero et al., 2020a), and the retraction or expansion of the snails range affects that of the snail-nesting *Rhodanthidium* species (Bogusch et al., 2020)

Another particular feature of *R. sticticum* is its territorial behaviour. The defence of an attractive territory to get access to females is known as “resource defence polygyny” (Emlen & Oring, 1977) and it has been widely described in Anthidiini: *Anthidiellum notatum* (Latreille, 1809) (Turell, 1976), *A. perplexum* (Smith, 1854) (Turell, 1976), *Anthidium banningsense* Cockerell, 1904 (Jaycox, 1967), *A. florentinum* (Fabricius, 1775) (Batra, 1978; Wirtz et al., 1992; García-González & Ornosa, 1999), *Anthidium illustrum* Cresson, 1879 (Alcock, 1977), *A. maculosum* Cresson, 1878 (Alcock et al., 1977), *A. manicatum* (Linnaeus, 1758) (Severinghaus et al., 1981; Wirtz et al., 1988, 1992; Payne et al., 2011), *A. palliventrum* Cresson, 1878 (Villalobos & Shelly, 1991), *A. palmarum* Cockerell, 1904 (Wainwright, 1978), *A. porterae* Cockerell, 1900 (Villalobos & Shelly, 1991), *A. septemspinosum* Lepeletier, 1841 (Sugiura, 1991), *R. septemdentatum* (Nachitegall, 1997a, 1997b) and *R. siculum* (Erbar & Leins, 2017). Among these, different resources are defended and different degrees of aggressiveness are displayed. However, in *R. sticticum* this aspect has only been mentioned, but not described in detail (Torres et al., 2003). For males, the main point of territoriality is to keep attractive territories for females to feed on and collect nectar and pollen; thus, the objective of territoriality is mating. However, there are no descriptions of *R. sticticum* reproductive behaviour, unlike the ones on the species mentioned earlier.

Finally, from an ecological point of view, *R. sticticum* has an important role as a connector in pollination networks in Mediterranean communities (Romero et al., 2020b). Several authors agree in its polylecty and its importance as a generalist bee (Bosch et al., 1993; Müller, 1996; Aguib et al., 2010; Torné-Noguera et al., 2014; Blanco-Pastor et al., 2015; Vargas et al., 2017), but they give very little information on the plants visited. Furthermore, it is a crucial species for the survival of a number of endemic and endangered Mediterranean plants (Fernández-Mazuecos et al., 2013; Agulló et al., 2015; Blanco-Pastor et al., 2015; Vargas et al., 2017; Schurr et al., 2019). Polylecty is widespread among the Anthidiini (Müller, 1996; Gonzalez & Griswold, 2013), but according to Müller (1996), two *Rhodanthidium* species are oligolectic (*R. aculeatum* and *R. superbum*). Another species, *R. caturigense*, is polylectic with a strong preference for Papilionoideae (family Papilionaceae) and the rest of species, including *R. sticticum*, would be polylectic (Müller, 1996).

On the basis that the different behaviours of *R. sticticum* and diverse aspects of its biology are the same or very similar to those of related Anthidiini, especially other species of the genus *Rhodanthidium*, our aim is to shed light on those features of the biology of *R. sticticum* that were uncertain, not described or lacking in detail. Here, we present mostly descriptive results on the phenology, use of snail shells as shelters, plant visitation and polylecty, flight ability, territoriality and mating of the red snail-nesting bee.

Material and methods

Phenology and use of shells

During the spring of 2014-2018, from the beginning of March (occasionally, from February) to the end of June, field surveys were undertaken (see locations in Romero et al., 2020a) following nonlinear transects. During these surveys, besides the collection data, temperature, time of the day, clouds coverage and wind were recorded (the last two variables were assessed qualitatively). The surveys were undertaken at different times of the day, in the morning, during the central hours of the day and at sunset, to observe the general activity of *R. sticticum* in different moments of
the day and the use of shells in particular. The presence of *R. sticticum* was assessed visually or by capturing individuals on the flight or inside snail shells, just counting the collected individuals. If the presence was visually assessed, no counting was done. Each collected shell was stored in an individual bag, to maintain the bees coming out from different shells separated.

Visited Plants

Four main locations in the Iberian Peninsula were selected to assess feeding plants: Gabasa, Huesca (42.007153°, 0.416735°); Buendía, Guadalajara (40.394967°, -2.791320°); Énix, Almería (36.877929°, -2.609264°) and Nuevalos, Zaragoza (41.213594°, -1.791900°). Observation of interactions in these four locations was performed in May and June, in 2017 and 2018, during the flowering peak of most plant species. They took place during the diurnal period of flower visitor activity (from 10:00 to 17:00 h). Sampling followed nonlinear transects, covering all different species that were on bloom within the area. The surveys were done by direct observation. An interaction was considered when *R. sticticum* touched the flower reproductive parts, but not when it only landed on the flowers. To identify the plant species, samples of all the visited plants were collected. Data about plants visited by *R. sticticum* was also collected from bibliography (Bosch *et al*., 1993; Torres *et al*., 2001, 2002; Escudero *et al*., 2003; Aguib *et al*., 2010; Vargas *et al*., 2010, 2013; Carrió & Güemes, 2013; Fernández-Mazuecos *et al*., 2013; Blanco-Pastor *et al*., 2015; Schurr *et al*., 2019), in addition to personal communications (Jordi Bosch).

Flight ability, territoriality and mating

The behaviour of both, males and females of *R. sticticum*, was observed and recorded through photographs and videos during May of 2016 and 2017 in Buendía (Guadalajara), in patches of *Antirrhinum microphyllum* Rothm., to describe flight ability, territoriality, mating and general behaviour. No individuals were marked. All these traits were described by means of both direct observation and detailed observation of the recordings.

Results

Phenology

In relation to *R. sticticum* life cycle, 66 observations were accomplished in different locations, under different weather conditions, days or time of the day, between 2014 and 2019, the earliest that an individual of *Rhodanthidium sticticum* was found on February 8 in La Breña Natural Park (Cádiz) and the latest, the 17th of June in Nuevalos (Zaragoza). Most of individuals were observed or collected between mid March and the end of May (85% of the records, Fig. 1). Almost 70% of the records were obtained during sunny days. Around 75% of the observations were made during days without wind. Concerning temperatures, 71% of the records were observed under temperatures between 20 and 30 degrees Celsius. In 66% of the observations, more than five different individuals were captured.

Use of snail shells

Of a total of 196 collected individuals, 63% were males and 37%, females. 56% were captured flying or visiting flowers and 44% were captured inside snail shells. 86 individuals were collected in 60 shells (Fig. 2). For the individuals captured or observed on the flight, the conditions were sunny and warm, and they were recorded during the central hours of the day. Most of the captures inside snail shells took place in cold, rainy and windy days, or at late afternoon.

Fig. 1.— Percentage of observations per fortnight, from February until July.

**Fig. 2.— Male of Rhodanthidium sticticum emerging from a shell of *Otala lactea*.
Concerning the individuals found inside shells, 70% did not share it, in 13% of the shells there were two individuals, in 8% of the shells three individuals of *Rhodanthidium sticticum* were sheltering and in one shell we found six individuals (Table 1A). Two shells were shared by an individual of *Rhodanthidium sticticum* and another bee of the genus *Osmia* Panzer, 1806 and two other shells were occupied by an individual of *Rhodanthidium sticticum* and an individual of *Rhodanthidium siculum* (Table 1C). Of the 18 shells shared by two or more bees, only three were occupied by females, each of them shared by a female and a male of *Rhodanthidium sticticum*. All the other females collected in snail shells were alone in the shell (19 out of 22 individuals, 86% of all the females collected in shells) (Table 1B).

Identification of Plant Species Visited by *Rhodanthidium sticticum*

Our field surveys showed a high diversity of plants on which *R. sticticum* feeds (Appendix 1). In particular, 43 species and 13 families of flowering plants from NE, C and SE of the Iberian Peninsula were identified. Among them, Papilionaceae (8 spp.), Lamiaceae (12 spp.) and Plantaginaceae (5 spp., all of them Antirrhineae) were the most frequently visited (Appendix 1). From literature, 38 more species belonging to 14 families were retrieved (Appendix 2). Therefore, polylecty appears to be predominant in *Rhodanthidium sticticum* diet. Despite that, *R. sticticum* shows a clear attraction for *Antirrhinum* species.

Flight Ability, Territoriality and Mating

Males spend most of the time patrolling their territories (estimated 75% of the time), looking for females (Fig. 3) or resting on nearby rocks and branches, usually promontories where they can warm up on the sun while they watch their area. From time to time, they visit the flowers in their territory to feed on nectar, but they do this activity more rarely. *Rhodanthidium sticticum* males also perform exploratory flights when a new object enters their territory (a bag or a camera, for example), during which they remain in static flight in front of the object, observing it directly. Females

Table 1.— A. Number of *R. sticticum* individuals found sheltering inside snail shells. B. Distribution of males and females of *R. sticticum* found in shells. C. Details of localities where individuals of *R. sticticum* from Table 1B were found in shared shells. Disposition of bees inside the shells. See Romero et al. (2020b) for a list of all localities where individuals of *R. sticticum* were found inside shells.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº bees in a shell Nº shells %</td>
<td>Nº shells Nº shells %</td>
</tr>
<tr>
<td>1</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>+ other species</td>
<td>4</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Locality</th>
<th>Province</th>
<th>Country</th>
<th>Shared shells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castro Marim</td>
<td>Algarve</td>
<td>Portugal</td>
<td>2♂♂</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3♂♂</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1♀</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1♂</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1♀</td>
</tr>
<tr>
<td>La Herradura</td>
<td>Granada</td>
<td>Spain</td>
<td>2♂♂</td>
</tr>
<tr>
<td>Espiel</td>
<td>Córdoba</td>
<td></td>
<td>2♂♂</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3♂♂</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1♂</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1♀</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1♀</td>
</tr>
<tr>
<td>Tibi</td>
<td>Alicante</td>
<td></td>
<td>3♂♂</td>
</tr>
<tr>
<td>Chelva</td>
<td>Valencia</td>
<td></td>
<td>1♂</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3♂♂</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3♂♂</td>
</tr>
<tr>
<td>Cuenca</td>
<td>Cuenca</td>
<td></td>
<td>6♂♂</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3♂♂</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1♂</td>
</tr>
</tbody>
</table>

spend their time looking for suitable shells for nesting, building the nest, feeding on nectar and collecting pollen for their offspring (Fig. 4).

Males protect territories with abundant flower patches, showing preference for Antirrhinum, Labiatae and Papilionaceae shrubs. They show a ferocious defence of the territory, chasing, attacking and striking other male intruders, but also other bees of similar or bigger size (including much bigger bumblebees or Xylocopa violacea (Linnaeus, 1758) individuals) and other flying insects that happen to enter their surveillance area, like flies or butterflies. We did not observe Rhodanthidium males attacking small flying insects in their territories.

A number of mating attempts end up in failure. Females are reluctant to the copula, so males try to catch them unaware. When a female detects the proximity of a male while feeding or collecting nectar, quickly take flight to avoid it (Fig. 5). Contact between a male and a female does not guarantee mating, either. Frequently, females wriggle out before males are able to copulate. If other male candidates are around, they usually interrupt the copula by trying to force the first male out and get the female. Even if the male has been able to start intercourse with the female, sometimes they become too heavy for the stems they are leaning on and they fall, allowing the female to escape (Fig. 6). During a successful intercourse (Fig. 7), a very characteristic sound, a continuous, rhythmic, dry clickety-clack noise can be heard, caused by the hitting of the cuticles.

Discussión

Phenology

Rhodanthidium sticticum is a very active bee during the flowering period of most Spring flowers, from March until June, but in warmer areas it is usual to find it as early as February. Most of records were taken between March and May, enlarging until mid June, matching the data from other areas of the species (Morocco, Algeria and Sicily: Kasparek & Lhomme, 2019; Algeria: Aguib et al., 2010). There are no records in literature or in collections about the presence of the species later than June, despite Kasparek (2019) stating, without providing any evidence (“an early spring and late autumn species with possibly two generations per year”) and that it was found in Spain in October/November. It seems to be, however, an univoltine species, like R. siculum or other Anthidiini bees (Anthidium florentinum, Fortunato et al., 2013). Flying period for this species starts early and is relatively long, similar to R. septemdentatum (Kasparek, 2019) but longer than R. siculum (Ortiz, 1990; Aguib et al. 2010; Erbar & Leins, 2017), probably due to the fact that R. siculum is associated to warmer climate and its optimal period is shorter (Romero et al., 2020a).

Sheltering in shells

Our results show that R. sticticum is active in sunny, not windy days, as most of the records on the flight were obtained under those conditions, corroborating
previous observations by other studies (Torres et al., 2001; Romero et al., 2020a). However during cloudy, rainy and windy days, or at the late afternoon, R. sticticum bees were mostly found sheltering inside snail shells. Apparently, Afranthidium hamaticauda Pasteels, 1984, A. odonturum (Cockerell, 1932) (Gess & Gess, 1999, 2008, 2014) and Hoplitis conchophila Kuhlmann, 2011 (Kuhlmann et al., 2011) also use snail shells for sheltering, but this behaviour has rarely been described. In those cases, the authors did not provide any information about the weather conditions or the time of the day they did their records at, but considering the location (the Namibian desert) the use for sheltering is, most likely, against the heat of the central hours of the day or to sleep at night. Despite the existence of detailed descriptions of the nesting

Fig. 4.— a. Female of Rhodanthidium sticticum visiting flowers of Antirrhinum microphyllum. b. Close-up of a female of R. sticticum visiting flowers of A. microphyllum.

Fig. 4.— a. Hembra de Rhodanthidium sticticum visitando flores de Antirrhinum microphyllum. b. Primer plano de una hembra de R. sticticum visitando flores de A. microphyllum.
behaviour of *Rhodanthidium* bees inside snail shells (Pasteels, 1977; Erbar & Leins, 2017), sheltering has never been described before on this species.

Of all the bees found in shells, 30% were sharing and most of them were males. This behaviour is in contrast with the territoriality usually shown when they are flying and there are no previous records of other bees in their adult phase sharing shells. The reasons could be diverse. Individuals sharing the same shells they were born from (phylopatry), high density of individuals and few shells disposable, which would force them to share, or the urge to rapidly find a shelter when the weather suddenly changes. The fact that most of the sharing bees were males is probably due to the higher proportion of males. The male-female proportion (3 males per female) is unlike other Anthidiini bees (*Anthidium florentinum*, Fortunato et al., 2013).

PLANT VISITATION AND POLYLECTY

Our results indicate low specificity of *R. sticticum* for particular plant species, in concordance with previous studies (Bosch et al., 1993; Aguib et al., 2010; Torné-Noguera et al., 2014). Specificity of bees to special feeding plants has been described as a rare phenomenon (Cane & Sipes, 2006; González-Varo et al., 2016). Indeed, *R. sticticum* appears to be a polylectic bee (Bosch et al., 1993; Müller, 1996), although it probably has a preference for bee-specialized (melittophilous) plants, such as *Antirrhinum*, *Linaria* and *Papilionaceae* (Blanco-Pastor et al., 2015; Vargas et al., 2017), and for deep-colla flowers, like the Labiatae (Appendices 1–2).

The flowers of melittophilous plants show fusion of petals (sympetal) and a bipartite perianth that hinders the entrance of insects other than bees and other Hymenoptera (Vargas et al., 2010; Blanco-Pastor et al., 2015). This flower structure protects the floral reward, thus ensuring that individuals reaching the bottom of the flower will most certainly get it, a reason why it could be so appreciated by *R. sticticum* females. It is particularly noteworthy the interest showed by *R. sticticum* in *Antirrhinum* species all through its range (see Appendices 1–2), proving that it is not a local preference, but a general one.

FLIGHT ABILITY

Flight ability by *R. sticticum* is identical to that described for *R. septemspinosum* (Nachtigall, 1997a). It is fast and precise and could be hypothesized that its good sight is, in part, responsible for it. Very few and recent studies concerning sight and perception have been performed on solitary bees (Loukola et al., 2020), but multiple discoveries in bumblebees confirmed learning skills, precise colour and shape discrimination (Giurfa et al., 1995; Spaethe et al., 2001; Dyer & Chittka, 2004; Solvi et al., 2020). The exploratory behaviour observed in *R. sticticum* males (and probably females, though it was not detected) is very similar to that described by Loukola et al. (2020) in *Osmia* bees when searching for suitable nesting sites.

TERRITORIALITY AND MATING

Rhodanthidium sticticum males, like most Anthidiini bees, are usually larger than females (García-González & Ornosa, 1999; Michener, 2007; Erbar & Leins, 2017), a probable consequence of territoriality, which helps them to get and defend better territories (Severinghaus et al., 1981; Villalobos & Shelly, 1991). Defence of territory is widely spread among Anthidini (Michener, 2007). Selection of territories where deep-colla flowers are predominant has been previously reported for *Anthidium maculosum* (Alcock et al., 1977), *A. septemspinosum* (Sugiura, 1991), *Anthidiellum notatum* and *A. perplexum* (Turell, 1976). Deeper corollas difficult females from seeing nearby males and escaping them. In the closely related species *R. siculum*, however, the defended territory is not rich in feeding flowers, but in empty shells for nesting (Erbar & Leins, 2017). In this case, *R. siculum* males take advantage of females when they are inside the shells. Despite the abundance of deep-colla flowers, many attempts at copulation were unsuccessful, due to the lack of receptiveness and the ready flight of the females, just like in other Anthidini bees (Wainwright, 1978; García-González & Ornosa, 1999; Erbar & Leins, 2017).

In the case of *R. sticticum*, the fierce defence is oriented not only against other males, but also against
individuals from other species. This behaviour has also been described for *A. florentinum*, against much bigger *Xylocopa violacea* bees (García-González & Ornosa, 1999), for *A. maculosum* against hawkmoths (Alcock *et al.*, 1977) or for *A. palmarum* against *Anthophora* bees (Wainwright, 1978). A different behaviour is showed by *Anthidiellum notatum* and *A. perplexum*, smaller Anthidiini that do not strike the intruders, but just chase them until they leave the territory (Turell, 1976). On the other extreme are *Anthidium manicatum*, whose males bear long spines at the end of the abdomen which they use to hurt or even kill intruders (Wirtz *et al.*, 1988), and *R. septemdentatum* (Nachtigall, 1997b), that attacks the wings of the intruders. That extremely aggressive behaviour was not observed in *R. sticticum*, but it could not be discarded. Interspecific territoriality as shown by *R. sticticum* and the other species has been
Conclusions

Phenology, polylecty, flight ability, territoriality and mating behaviour in *Rhodanthidium sticticum* are similar to those of other Anthidiini, but with some particularities. *Rhodanthidium sticticum* is a spring bee, whose period of activity depends on the latitude and the availability of flowers. It is on the flight during sunny, warm and non-windy days. On the contrary, it takes shelter inside snail shells in cold, rainy, windy days, late afternoon and at night. When hiding inside the shells, it usually shares the shells with other individuals of the same or other bee species. It is a polylectic bee, but with preferences for certain plant groups (Anthirrineae, Labiatae, Papilionaceae), particularly attracted to *Antirrhinum* flowers. Territories defended by males are, usually, flower patches from the mentioned groups, both because they provide an attractive amount of nectar and pollen for the females and because this deep-corolla flowers prevent females from escaping the copula. Males attack other *Rhodanthidium sticticum* males entering their territory, as well as individuals from other flying insects, in an attempt to maintain the attractiveness of their territories and to prevent other males from mating, presenting a behaviour probably driven by spermatic competence.

Acknowledgements

Thanks to Irene de Sosa, Diego Cepeda, María Benito, Alejandro Romero, Maria Romero, Claudia Abellán and Jaime

Terrasa for their help during the field surveys. We would also like to thank the reviewers for their valuable comments and suggestions.

Funding information

Funding was provided by the Spanish Ministry of Education, Culture and Sports to Daniel Romero (FPU014/02750).

References

Appendix 1.— Plant species visited by *Rhodanthidium sticticum* in Buendia Dam, Guadalajara (B); Cabo de Gata, Almeria (C); Énix, Almería (E); Gabasa, Huesca (G); Monzón, Huesca (M); Nuévalos, Zaragoza (N).

Apéndice 1.— Especies de plantas visitadas por *Rhodanthidium sticticum* en la presa de Buendia, Guadalajara (B); Cabo de Gata, Almería (C); Énix, Almería (E); Gabasa, Huesca (G); Monzón, Huesca (M); Nuévalos, Zaragoza (N).

<table>
<thead>
<tr>
<th>Species</th>
<th>Family</th>
<th>Loc.</th>
<th>Species</th>
<th>Family</th>
<th>Loc.</th>
<th>Species</th>
<th>Family</th>
<th>Loc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thapsia villosa L.</td>
<td>Apiaceae</td>
<td>E</td>
<td>Marrubium supinum L.</td>
<td>Lamiaceae</td>
<td>E</td>
<td>Hedysoarum bovseum Bunge ex Baisner</td>
<td>Papilionaceae</td>
<td>G</td>
</tr>
<tr>
<td>Anthemis arvensis L.</td>
<td>Asteraceae</td>
<td>G</td>
<td>Phomis lychnitis L.</td>
<td>Lamiaceae</td>
<td>B, E, N</td>
<td>Lathyrus clymenum L.</td>
<td>Papilionaceae</td>
<td>E</td>
</tr>
<tr>
<td>Cardus nigriscens Vill.</td>
<td>Asteraceae</td>
<td>N</td>
<td>Rosmarinus officinalis Spenn.</td>
<td>Lamiaceae</td>
<td>B, N</td>
<td>Medicago sativa L.</td>
<td>Papilionaceae</td>
<td>N</td>
</tr>
<tr>
<td>Cirsium arvense (L.) Scop.</td>
<td>Asteraceae</td>
<td>B</td>
<td>Salvia verbenaca L.</td>
<td>Lamiaceae</td>
<td>B, N</td>
<td>Ononis matrix L.</td>
<td>Papilionaceae</td>
<td>E</td>
</tr>
<tr>
<td>Helichrysum stoechas (L.) Moench</td>
<td>Asteraceae</td>
<td>B</td>
<td>Sideritis tragoriganum Lag.</td>
<td>Lamiaceae</td>
<td>B</td>
<td>Anthirrinum pulvaretum Lázaro Ibiza</td>
<td>Plantaginaceae</td>
<td>N</td>
</tr>
<tr>
<td>Anchusa undulata L.</td>
<td>Boraginaceae</td>
<td>N</td>
<td>Thymus hylenalis Lange</td>
<td>Lamiaceae</td>
<td>E</td>
<td>Anthirrinum microphyllum Rothm.</td>
<td>Plantaginaceae</td>
<td>B</td>
</tr>
<tr>
<td>Echium plantagineum L.</td>
<td>Boraginaceae</td>
<td>N</td>
<td>Thymus masticina (L.) L.</td>
<td>Lamiaceae</td>
<td>N</td>
<td>Antirninum molle L.</td>
<td>Plantaginaceae</td>
<td>G</td>
</tr>
<tr>
<td>Echium vulgare L.</td>
<td>Boraginaceae</td>
<td>B, E</td>
<td>Thymus zygis Loefl. ex L.</td>
<td>Lamiaceae</td>
<td>M</td>
<td>Antirninum sp.</td>
<td>Plantaginaceae</td>
<td>Taza, Morocco</td>
</tr>
<tr>
<td>Cistus albidus L.</td>
<td>Cistaceae</td>
<td>E</td>
<td>Lavatera maritima Gouan</td>
<td>Malvacae</td>
<td>C</td>
<td>Antirninum sp.</td>
<td>Plantaginaceae</td>
<td>Tazzekka, Morocco</td>
</tr>
<tr>
<td>Convolvulus althaeoides L.</td>
<td>Convolvulaceae</td>
<td>E</td>
<td>Anthlysia cytisoides L.</td>
<td>Papilionaceae</td>
<td>E</td>
<td>Linaria aeruginea (Gouan) Cav.</td>
<td>Plantaginaceae</td>
<td>N</td>
</tr>
<tr>
<td>Gladiolus communis L.</td>
<td>Iridaceae</td>
<td>E</td>
<td>Anthlysia terniflora (Lag.) Pau</td>
<td>Papilionaceae</td>
<td>E</td>
<td>Reseda lutea L.</td>
<td>Resedaceae</td>
<td>B</td>
</tr>
<tr>
<td>Ballota hirsuta Benth.</td>
<td>Lamiaceae</td>
<td>E</td>
<td>Coronilla juncea L.</td>
<td>Papilionaceae</td>
<td>E</td>
<td>Ruta angustifolia Pers.</td>
<td>Rutaraceae</td>
<td>B</td>
</tr>
<tr>
<td>Lavandula multida L.</td>
<td>Lamiaceae</td>
<td>E</td>
<td>Coronilla minima L.</td>
<td>Papilionaceae</td>
<td>B</td>
<td>Asphodelus fistulosus L.</td>
<td>Xanthorrhoeaceae</td>
<td>E</td>
</tr>
</tbody>
</table>
Appendix 2.— Plant species visited by *Rhodanthidium sticticum* obtained from bibliography.

Apéndice 2.— Especies de plantas visitadas por *Rhodanthidium sticticum* obtenidas de la bibliografía.

<table>
<thead>
<tr>
<th>Species</th>
<th>Family</th>
<th>Location</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hedysarum coronarium L.</td>
<td>Papilionaceae</td>
<td>Constantine, Oum El Bouaghi (Algeria)</td>
<td>Aguib et al., 2010</td>
</tr>
<tr>
<td>Cytisus litoilus (L.) Lam.</td>
<td>Papilionaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carduus sp.</td>
<td>Asteraceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centarea nicaeensis All.</td>
<td>Asteraceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crepis vesicaria L.</td>
<td>Asteraceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malva sylvestris L.</td>
<td>Malvaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linaria almjarensis Campo & Amo</td>
<td>Plantaginaceae</td>
<td>Cabra (Jaén)</td>
<td></td>
</tr>
<tr>
<td>Linaria amoi Campo ex Amo</td>
<td>Plantaginaceae</td>
<td>Canillas de Aceituno (Málaga)</td>
<td></td>
</tr>
<tr>
<td>Linaria anticaria Boiss. & Reut.</td>
<td>Plantaginaceae</td>
<td>El Torcal, Antequera (Málaga)</td>
<td></td>
</tr>
<tr>
<td>Linaria depauperata subsp. hegelmaieri (Lange) De la Torre, Alcaraz & M.B. Crespo</td>
<td>Plantaginaceae</td>
<td>Arenal de Petrel (Alicante)</td>
<td>Blanco-Pastor et al., 2015</td>
</tr>
<tr>
<td>Linaria platycalyx Boiss.</td>
<td>Plantaginaceae</td>
<td>Zahara de la Sierra (Cádiz)</td>
<td></td>
</tr>
<tr>
<td>Linaria polygálifo Hoffmanns. & Link</td>
<td>Plantaginaceae</td>
<td>Monte Gordo (Algarve, Portugal)</td>
<td></td>
</tr>
<tr>
<td>Cistus sp</td>
<td>Cistaceae</td>
<td>Cazorla or Les Garrigues (not specified)</td>
<td>Bosch et al., 1993</td>
</tr>
<tr>
<td>Quercus sp</td>
<td>Fagaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centarea linifolia L.</td>
<td>Asteraceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anagallis arvensis L.</td>
<td>Primulaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biscutella laevigata L.</td>
<td>Brassicaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centarea paniculata L.</td>
<td>Asteraceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cistus albidus L.</td>
<td>Cistaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cistus salvifolius L.</td>
<td>Cistaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convulvulus althaeoides L.</td>
<td>Convolvolaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorycnium hirsutum (L.) Ser.</td>
<td>Papilionaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gladiolus communis L.</td>
<td>Iridaceae</td>
<td>El Garraf Natural Park (Barcelona)</td>
<td>Bosch, pers.com.</td>
</tr>
<tr>
<td>Iris lutescens Lam.</td>
<td>Iridaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscaris neglectum Guss. ex Ten.</td>
<td>Asparagaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orobanche latisquama (F.W. Schultz) Batt.</td>
<td>Orobanchaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phlomis lychnitis L.</td>
<td>Lamiaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranunculus gramineus L.</td>
<td>Ranunculaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhaponticum coniferum (L.) Greuter</td>
<td>Asteraceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis L.</td>
<td>Lamiaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sideritis hisuta L.</td>
<td>Lamiaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thymus vulgaris L.</td>
<td>Lamiaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fumana hispidula Loscos & J. Pardo</td>
<td>Cistaceae</td>
<td>Dehesa del Saler (Valencia)</td>
<td>Carrié & Güemes, 2013</td>
</tr>
<tr>
<td>Antirrhinum microphyllum Roth.</td>
<td>Plantaginaceae</td>
<td>Entrepeñas (Guadalajara)</td>
<td>Escudero et al., 2003</td>
</tr>
<tr>
<td>Linaria clementei Haens.</td>
<td>Plantaginaceae</td>
<td>Málaga</td>
<td></td>
</tr>
<tr>
<td>Linaria salzmanii Boiss.</td>
<td>Plantaginaceae</td>
<td>Málaga</td>
<td></td>
</tr>
<tr>
<td>Astragalus tragacantha L.</td>
<td>Papilionaceae</td>
<td>Calanques National Park (Marseille, France)</td>
<td>Schurr et al., 2019</td>
</tr>
<tr>
<td>Antirrhinum charidemi Lange</td>
<td>Plantaginaceae</td>
<td>Cabo de Gata (Almeria)</td>
<td>Vargas et al., 2010</td>
</tr>
<tr>
<td>Antirrhinum australie Rothm.</td>
<td>Plantaginaceae</td>
<td>Benaocaz and Zahara de la Sierra (Cádiz)</td>
<td></td>
</tr>
<tr>
<td>Antirrhinum barrelieri Boreau</td>
<td>Plantaginaceae</td>
<td>Mojácar-Carboneras (Almeria)</td>
<td></td>
</tr>
<tr>
<td>Antirrhinum hispanicum Chav.</td>
<td>Plantaginaceae</td>
<td>Guéjar Sierra; Trevenque; Abrucena (Granada)</td>
<td></td>
</tr>
<tr>
<td>Antirrhinum microphyllum Rothm.</td>
<td>Plantaginaceae</td>
<td>Buendía dam, Sacedón (Cuenca)</td>
<td>Vargas et al., 2017</td>
</tr>
<tr>
<td>Antirrhinum molle L.</td>
<td>Plantaginaceae</td>
<td>Gabasa (Huesca)</td>
<td></td>
</tr>
<tr>
<td>Antirrhinum mollissimum (Pau) Rothm.</td>
<td>Plantaginaceae</td>
<td>Énix (Almeria)</td>
<td></td>
</tr>
<tr>
<td>Antirrhinum pulverulentum Lázaro Ibiza</td>
<td>Plantaginaceae</td>
<td>Nuévalos (Zaragoza)</td>
<td></td>
</tr>
</tbody>
</table>