FIRST RECORD OF THE NEW ZEALAND MUDSNAIL POTAMOPYRGUS ANTIPODARUM (J.E. GRAY, 1843) (TATEIDAE, MOLLUSCA) IN AFRICA

Abdelkhaleq Fouzi Taybi1, Youness Mabrouki2,* & Peter Glöer3

1 Université Mohammed Premier, Faculté Pluridisciplinaire de Nador, Équipe de Recherche en Biologie et Biotechnologie Appliquées, Morocco

Email: taybiaf@gmail.com — ORCID iD: https://orcid.org/0000-0001-9652-5407

2 Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mehraz, Biotechnology, Conservation and Valorisation of Natural Resources laboratoy, Fez, Morocco

Email: younes_mab@hotmail.fr / youness.mabrouki@usmba.ac.ma — ORCID iD: https://orcid.org/0000-0002-7336-8717

3 Schulstr. 3, D-25491 Hetlingen, Germany

Email: gloeer@malaco.de — ORCID iD: https://orcid.org/0000-0001-6995-3641


* Correspondig autor: younes_mab@hotmail.fr / youness.mabrouki@usmba.ac.ma

 

ABSTRACT

Listed recently in the top “hundred worst” alien species and the third “worst alien” mollusc in Europe, the New Zealand mudsnail has become cosmopolitan. We report its first finding in the African continent, in Morocco. Established populations of Potamopyrgus antipodarum were found in the Low Moulouya wetland, a Ramsar and Biological and Ecological Interest Site (SIBE), occupying natural and anthropogenic habitats (spring, river and artificial canal). The invasion process seems to be in its early stages, calling for drastic measures to control its invasion progress.

Keywords: new arrival; Morocco; aquatic invasion; New Zealand mudsnail; alien gastropod.

 

RESUMEN

Primera cita en África del caracol del cieno de Nueva Zelanda Potamopyrgus antipodarum (J.E. Gray, 1843) (Tateidae, Mollusca)

Incluido recientemente entre las “cien peores” especies invasoras y siendo el tercero de los “peores moluscos invasores” en Europa, el caracol del cieno de Nueva Zelanda ha llegado a ser cosmopolita. Se comunica el primer hallazgo en el continente africano, en Marruecos. Se encontraron poblaciones establecidas de Potamopyrgus antipodarum en el humedal Low Moulouya, un Sitio Ramsar y un Sitio de Interés Biológico y Ecológico (SIBE), donde ocupa hábitats naturales y antropogénicos (manantial, río y canal artificial). El proceso de invasión parece estar en sus primeras etapas, lo que exige medidas drásticas para poder controlar su progreso.

Palabras clave: recién llegado; Marruecos; invasión acuática; caracol de barro de Nueva Zelanda; gasterópodo invasor.

 

Recibido/Received: 09/11/2020; Aceptado/Accepted: 11/03/2021; Publicado en línea/Published online: 15/07/2021

Citation / Cómo citar este artículo: Taybi, A. F., Mabrouki Y. & Glöer, P. 2021. First record of the New Zealand mudsnail Potamopyrgus antipodarum (J.E. Gray, 1843) (Tateidae, Mollusca) in Africa. Graellsia, 77(2): e140. https://doi.org/10.3989/graellsia.2021.v77.303

Copyright: © 2021 SAM & CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License.


 

CONTENTS

ABSTRACT

RESUMEN

Introduction

Material and methods

Results

Discussion

References

IntroductionTop

The Maghrebian territory, located in the western and more arid part of the Mediterranean Basin, is recognized as a biodiversity hotspot (Myers et al., 2000). Within the Maghreb, Morocco is particularly interesting for faunistic, ecological and biogeographical studies thanks to its geographical position; it represents a contact area between several regions, such as southern Europe and Africa. Its importance is associated with its role as a compulsory passage area for much of the fauna between the Palaearctic and Afrotropical regions.

The fauna of Morocco is characterized by a high rate of endemism (Taybi et al., 2019; Mabrouki et al., 2020a). The country has multiple geographical barriers, such as the Moulouya River Basin, the Sahara, the Rif Mountains and the Atlas Mountains. The latter divide the northern part of the country into two bioclimatic regions, which in turn are associated with high levels of endemism (Mabrouki et al., 2019a). This high endemicity makes communities vulnerable to the arrival of new invasive species lacking a shared evolutionary history (Ellender et al., 2015). Freshwater biodiversity and habitats are increasingly being affected by human activities worldwide, and freshwater ecosystems may well be the most endangered ecosystems in the world (Stiassny, 1999), particularly by biological invasions (Dukes & Mooney, 1999).

Invasive species are a major threat to global biodiversity, causing the decline and extinction of native aquatic species throughout the world (Strauss et al., 2006). Growth in international trade and concurrent increases in transport capacity have accelerated the rate of introduction of alien species worldwide, with aquatic ecosystems and their native communities being particularly susceptible (Macdonald & Tonkin, 2008). Invasive species can be introduced into a new region through three broad mechanisms: the importation of a product, the arrival of a transport vector or natural spread from a neighbouring region where the alien species is already established (Mendoza et al., 2014).

Within molluscs, many species have been considered as invasive in freshwater ecosystems (Karatayev et al., 2009). They are represented mainly by Bivalvia, such as the Asian clam Corbicula fluminea (O.F. Müller, 1774) (Domagała et al., 2004), and the zebra mussel Dreissena polymorpha (Pallas, 1771) (Reeders & de Vaate 1990), but also by Gastropoda, such as the apple snail Pomacea canaliculata (Lamarck, 1828) (Estebenet & Martín, 2002). Another good example of biological invasion success in phylum Gastropoda is the New Zealand mudsnail Potamopyrgus antipodarum (J.E. Gray, 1843), which is one of the most successful invasive freshwater mollusc species worldwide. It has invaded a wide variety of freshwater and estuarine habitats in all continents, except for Antarctica and Africa (Collado, 2014; Alonso et al., 2019; Levri et al., 2020).

In this paper, we report the first finding of established populations of the New Zealand mudsnail Potamopyrgus antipodarum in the African continent, in Morocco. We discuss possible mechanisms of introduction. Moreover, we aim to increase awareness on the impacts of invasive species on native fauna in Morocco.

Material and methodsTop

STUDY AREA

The Moulouya River, with its length of almost 600 km, is one of the longest rivers of Morocco and the Maghreb. It is located in the northeast of the country and flows into the Mediterranean Sea. Its main permanent tributaries are the Ansegmir, Melloulou, Za and Msoun rivers. Other tributaries are currently intermittent (three to five flash floods on average per year) (Mabrouki et al., 2019b; Taybi et al., 2020a). The Site of Biological and Ecological Interest (SIBE) of the lower Moulouya extends over an area of almost 3000 ha, over a length of 25 km (Fig. 1). It presents various aquatic ecosystems, including the mouth of the Moulouya River and its floodplain, the coastal marine strip 6 km in length, the dune ridge, salt marshes with semi-temporary immersion and a river channel of 7 km length (Dakki et al., 2003).

Fig. 1.— Map showing the location of the Ramsar site of the Moulouya wetland and the distribution area and habitat type (Chrarba spring) of Potamopyrgus antipodarum (J.E. Gray, 1843) in Morocco.

Fig. 1.— Ubicación del sitio Ramsar del humedal Moulouya, el área de distribución y el tipo de hábitat (manantial Chrarba) de Potamopyrgus antipodarum (J.E. Gray, 1843) en Marruecos.

 

SAMPLING

During field surveys conducted from 2014 to 2020, more than 100 localities were investigated in Eastern Morocco and the Moulouya River basin (see Mabrouki et al., 2020a for additional details on localities). Most of these sampling sites were visited at least three times. The samples of benthic fauna including molluscs were collected with a Surber sampler (surface of 20 × 25 cm and 0.4 mm mesh net). Conductivity, pH, dissolved oxygen and temperature were measured in situ with a multiparametric measuring device (WTW, MultiLine P4).

The measurements of the shells were carried out using a stereo microscope (ZEISS); the photographs were taken with a digital camera system (Leica R8). The map was made using ArcGIS software.

ResultsTop

New Zealand mudsnails were detected in three locations of the >100 water bodies prospected (Fig. 1, Table 1), most of them brackish or moderately mineralized, near to the coast and always at low altitude. About 400 individuals have been collected (Fig. 2). We dissected eight specimens (all females). The habitats range between the spring of Chrarba, the potamal section of the Moulouya River and the artificial canal of Saidia; all these localities belong to the Ramsar site of the low Moulouya wetland. Our observations represent the first records of established populations of P. antipodarum in Morocco and in the African continent.

Fig. 2.— Habitus of Potamopyrgus antipodarum (J.E. Gray, 1843).

Fig. 2.— Hábitus de Potamopyrgus antipodarum (J.E. Gray, 1843).

 

Table 1.— Records of Potamopyrgus antipodarum (J.E. Gray, 1843) in the Ramsar site of the Moulouya wetland. Localities, dates, GPS coordinates and habitats and physical-chemical parameters of the water are provided.

Tabla 1.— Registros de Potamopyrgus antipodarum (J.E. Gray, 1843) en el sitio Ramsar del humedal Moulouya. Se indican localidades, fechas, coordenadas GPS y hábitats y parámetros físico-químicos del agua.

Locality Dates GPS coordinates Abundance per m2 Habitat pH Temperature °C Conductivity µs/cm Dissolved oxygen mg/l Depth cm Water speed cm.s–1 Type of substrat
Chrarba 30/07/18 35°06’18.7”N
2°20’45.0”W
250 spring 7.5 25 2030 8 50 25 mud
Pont Moulouya 16/06/19 35°06’32.6”N
2°21’41.9”W
20 River 7.2 26 4700 7.5 80 5 mud
Canal Saidia 16/06/19 35°06’20.6”N
2°20’42.4”W
140 Artificial canal 7.8 25 1950 7 40 25 mud

DiscussionTop

The New Zealand mudsnail has successfully spread through fast rivers, slow-flowing and fresh, brackish and saline water ecosystems all around the world, including lakes, streams, and estuaries (Naser & Son, 2009). In some invaded areas, the densities of the species can exceed 500 000 m2 (Hall et al., 2006). The number of individuals of P. antipodarum collected was relatively low in this first study. This suggests the invasion could be in its initial stage. It is expected that the species range will increase exponentially across the five continents. In European waters the species has been present for more than 100 years, and its further expansion in temperate freshwater ecosystems is still ongoing (Rakauskas et al., 2007; Butkus et al., 2014), which is already noted in the neighbouring invaded areas. Alonso et al. (2019) have shown that the species has invaded the entire Iberian Peninsula and it is in a clear spreading phase, which makes its control very difficult, especially because of its non-water mediated dispersion mechanisms (e.g., mud or birds). This is the reason why it has been recently added to the top “hundred worst” alien species and the third “worst alien” mollusc (Nentwig et al., 2018).

Several hypotheses regarding the introduction of P. antipodarum have been proposed; some of them suggest shipping, either in ballast waters or water tanks. Long/short distance transport means related to commercial movements of aquarium and ornamental fish and plant trade have been also reported. In addition to transport on mud, fishing tools or recreational vessels, the mud snails may also travel by hitchhiking on bird legs or even inside the gut of birds or fishes (Zaranko et al., 1997; Alonso & Castro-Díez, 2008; DFO, 2011). Waterfowl may be the main vectors for inland spread in Northern Africa, since many routes of bird migration between Europe and Africa cross the Iberian Peninsula and Morocco (Pérez-Tris & Santos, 2004; Alonso et al., 2019).

The enormous worldwide invasion success of the species is attributed to several biological features, including opportunistic diet, high growth rates, high ability to escape from predators and other related behavioural traits, parthenogenetic reproduction, and high degree of tolerance to desiccation and a wide range of abiotic parameters (Koetsier, 2006; Rakauskas et al., 2007; Adema et al., 2009; Drown et al., 2011; Levri et al., 2020).

Alien and invasive species keep being recorded from the aquatic ecosystems of Morocco, leading to the formation of new communities of species with diverse interactions and unpredictable damages, especially in freshwater ecosystems including the Moulouya River basin (Mabrouki et al., 2020b; Taybi & Mabrouki 2020; Taybi et al., 2020b, 2020c). This unique ecosystem is home for a diverse array of animal and plant species, many of which are endemic, rare and vulnerable, including freshwater molluscs such as Aghbalia aghbalensis Glöer, Mabrouki & Taybi, 2020, Islamia tifertiensis Glöer, Mabrouki & Taybi, 2020; Theodoxus numidicus (Récluz, 1841) and Unio foucauldianus Pallary, 1936 (Taybi et al., 2017; Glöer et al., 2020; Mabrouki et al., 2020c). In addition to habitat destruction and deterioration of the quality of surface waters currently occurring in Morocco (Mabrouki et al., 2017; Taybi et al., 2020d), global change may increase the chance of success of exotic species by reducing the fitness of local species in the new environment (Dukes & Mooney, 1999). Many of the Moroccan endemic species would see their regional distribution greatly reduced or may even disappear. Given the absence of rigorous international databases that track species in real time and huge research gaps for invasive species in Morocco, in particular, or in Africa in general, a comprehensive and thorough knowledge of the current invasive species distribution at country or continental scale is necessary to ensure their effective management.


ReferencesTop

Adema, C. M., Lan, C. M., Hanelt, B. & Seville, R. S. 2009. Digenean trematode infections of native freshwater snails and invasive Potamopyrgus antipodarum in the Grand Teton National Park/John D. Rockefeller Memorial Parkway area. Journal of Parasitology, 95: 224-227. https://doi.org/10.1645/GE-1614.1
Alonso, A. & Castro-Díez, P. 2008. What explains the invading success of the aquatic mud snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca)?. Hydrobiologia, 614(1): 107-116. https://doi.org/10.1007/s10750-008-9529-3
Alonso, Á., Castro-Díez, P., Saldaña-López, A. & Gallardo, B. 2019. The New Zealand mud snail Potamopyrgus antipodarum (J.E. Gray, 1853) (Tateidae, Mollusca) in the Iberian Peninsula: temporal patterns of distribution. BioInvasions Records, 8(2): 287-300. https://doi.org/10.3391/bir.2019.8.2.11
Butkus, R., Sidagyte, E., Rakauskas, V. & Arbaciauskas, K. 2014. Distribution and current status of non-indigenous mollusc species in Lithuanian inland waters. Aquatic Invasions, 9: 95-103. https://doi.org/10.3391/ai.2014.9.1.08
Collado, G. A. 2014. Out of New Zealand: molecular identification of the highly invasive freshwater mollusc Potamopyrgus antipodarum (Gray, 1843) in South America. Zoological Studies, 53(1): 1-9. https://doi.org/10.1186/s40555-014-0070-y
Dakki, M., El Fellah, B., Ferkhaoui, M., El Houadi, B. & Benhoussa, A. 2003. Diagnostic pour l’aménagement des zones humides du Nord-Est du Maroc: Embouchure de la Moulouya. MedWetCoast Report. Maroc, 52 pp.
DFO 2011. Science advice from the risk assessment of New Zealand mud snail (Potamopyrgus antipodarum) in Canada. DFO Canadian Science Advisory Secretariat. Science. Report. 2010/065, 8 pp.
Domagała, J., Łabęcka, A. M., Pilecka-Rapacz, M. & Migdalska, B. 2004. Corbicula fluminea (O. F. Müller, 1774) (Bivalvia: Corbiculidae) a species new to the Polish malacofauna. Folia Malacologica, 12(3): 145-148. https://doi.org/10.12657/folmal.012.011
Drown, D. M., Levri, E. P. & Dybdahl, M. F. 2011. Invasive genotypes are opportunistic specialists not general purpose genotypes. Evolutionary Applications, 4: 132-143. https://doi.org/10.1111/j.1752-4571.2010.00149.x
Dukes, J. S. & Mooney, H. A. 1999. Does global change increase the success of biological invaders?. Trends in Ecology and Evolution, 14: 135-139. https://doi.org/10.1016/S0169-5347(98)01554-7
Ellender, B. R., Woodford, D. J. & Weyl, O. L. 2015. The invasibility of small headwater streams by an emerging invader, Clarias gariepinus. Biological Invasions, 17: 57-61. https://doi.org/10.1007/s10530-014-0744-8
Estebenet, A. L. & Martín, P. R. 2002. Pomacea canaliculata (Gastropoda: Ampullariidae): life-history Traits and their Plasticity. Biocell, 26(1): 83-89.
Glöer, P., Mabrouki, Y. & Taybi, A. F. 2020. A new genus and two new species (Gastropoda, Hydrobiidae) from Morocco. Ecologica Montenegrina, 28: 1-6. https://doi.org/10.37828/em.2020.28.1
Hall, R.O., Dybdahl, M. F. & VanderLoop, M. C. 2006. Extremely high secondary production of introduced snails in rivers. Ecological Applications, 16: 1121-1131. https://doi.org/10.1890/1051-0761(2006)016[1121:EHSPOI]2.0.CO;2
Karatayev, A. Y., Burlakova, L. E., Padilla, D. K., Mastitsky, S. E. & Olenin, S. 2009. Invaders are not a random selection of species. Biological Invasions, 11: 2009-2019. https://doi.org/10.1007/s10530-009-9498-0
Levri, E. P., Macelko, N., Brindle, B., Levri, J. E., Dolney, T. J. & Li, X. 2020. The invasive New Zealand mud snail Potamopyrgus antipodarum (J.E. Gray, 1843) in central Pennsylvania. BioInvasions Records, 9(1): 109-119. https://doi.org/10.3391/bir.2020.9.1.15
Lysne, S. & Koetsier, P. 2006. Experimental studies on habitat preference and tolerances of three species of snails from the Snake River of southern Idaho, USA. American Malacological Bulletin, 21: 77-85.
Macdonald, J. & Tonkin, Z. 2008. A review of the impact of eastern gambusia on native fishes of the Murray-Darling Basin. Authority Publication No. 38/09, Canberra 52pp.
Mabrouki, Y., Taybi, A. F. & Berrahou, A. 2017. L’évolution spatio-temporelle de la qualité des eaux courantes de l’Oued Melloulou (Maroc). Revue des Sciences de l’Eau, 30(3): 213-225. https://doi.org/10.7202/1044248ar
Mabrouki, Y., Taybi, A. F., Skalli, A. & Sánchez-Vialas, A. 2019a. Amphibians of the Oriental Region and the Moulouya River Basin of Morocco: distribution and conservation notes. Basic and Applied Herpetology, 33: 19-32.
Mabrouki, Y., Taybi, A. F., El Alami, M. & Berrahou, A. 2019b. Biotypology of stream macroinvertebrates from North African and semi arid catchment: Oued Za (Morocco). Knowledge and Management of Aquatic Ecosystems, 420: 17-17. https://doi.org/10.1051/kmae/2019009
Mabrouki, Y., Taybi, A. F., El Alami, M., Wiggers, R. & Berrahou, A. 2020a. New data on fauna of caddisflies (Insecta: Trichoptera) from northeastern Morocco with notes on chorology. Aquatic Insects, 41(3): 1-35. https://doi.org/10.1080/01650424.2020.1797817
Mabrouki, Y., Taybi, A. F., Bahhou, J. & Doadrio, I. 2020b. The first record of the green swordtail Xiphophorus helleri (Miller, 1966) (Poeciliidae) established in the wild from Morocco. Journal of Applied Ichthyology, 36(6): 1-6. https://doi.org/10.1111/jai.14105
Mabrouki, Y., Taybi, A. F. & Glöer, P. 2020c. New additions to gastropod fauna (Gastropoda: Hydrobiidae, Lymnaeidae) of Morocco. Ecologica Montenegrina, 31: 40-44. https://doi.org/10.37828/em.2020.31.8
Mendoza, R., Ramírez-Martínez, C., Aguilera, C. & Meave del Castillo, M. E. 2014. Principales vías de introducción de las especies exóticas Mendoza, R. & Koleff, P. Especies acuáticas invasoras en México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad México 43-73.
Myers, N., Mittermeier, R. A., Mittermeier, C.G., da Fonseca, G. A. B. & Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403(6772): 853-858. https://doi.org/10.1038/35002501
Naser, M. D. & Son, M. O. 2009. First record of the New Zealand mud snail Potamopyrgus antipodarum (Gray, 1843) from Iraq: the start of expansion in Western Asia?. Aquatic Invasions, 4: 369-372. https://doi.org/10.3391/ai.2009.4.2.11
Nentwig, W., Bacher, S., Kumschick, S., Pysek, P. & Vila, M. 2018. More than “100 worst” alien species in Europe. Biological Invasions, 20: 1611-1621. https://doi.org/10.1007/s10530-017-1651-6
Pérez-Tris, J. & Santos, T. 2004. Spanish research on avian migration: historical trajectory and future perspectives. Ardeola, 51: 71-89.
Rakauskas, V., Šidagytė, E., Butkus, R. & Garbaras, A. 2007. Effect of the invasive New Zealand mud snail (Potamopyrgus antipodarum) on the littoral macroinvertebrate community in a temperate mesotrophic lake. Marine and Freshwater Research, 69: 155-166. https://doi.org/https://doi.org/10.1071/MF17059
Reeders, H. H. & de Vaate, A.B. 1990. Zebra mussels (Dreissena polymorpha): a new perspective for water quality management. Hydrobiologia, 200-201(1): 437-450. https://doi.org/10.1007/BF02530361
Stiassny, M. 1999. The medium is the message: Freshwater biodiversity in peril Cracraft, J. & Griffo, F. The Living Planet in Crisis: Biodiversity Science and Policy, Columbia University Press New York 53-71.
Strauss, S. Y., Lau, J. A. & Carroll, S. P. 2006. Evolutionary responses of natives to introdu ced species: what do introductions tell us about natural communities?. Ecology Letters, 9: 357-374. https://doi.org/10.1111/j.1461-0248.2005.00874.x
Taybi, A. F. & Mabrouki, Y. 2020. The American blue crab Callinectes sapidus Rathbun, 1896 (Crustacea: Decapoda: Portunidae) is rapidly expanding through the Mediterranean coast of Morocco. Thalassas, 36(2): 1-5. https://doi.org/10.1007/s41208-020-00204-0
Taybi, A. F., Mabrouki, Y., Ghamizi, M. & Berrahou, A. 2017. The freshwater malacological composition of Moulouya’s watershed and Oriental Morocco. Journal of Materials and Environmental Science, 8(4): 1401-1416.
Taybi, A. F., Mabrouki, Y., Berrahou, A., Sbaa, M. & Brochard, C. 2019. New data on the distribution of dragonflies (Odonata) from the watershed of Moulouya and Oriental Morocco. Arxius de Miscellania Zoologica, 17: 85-108. https://doi.org/10.32800/amz.2019.17.0085
Taybi, A. F., Mabrouki, Y., Berrahou, A., Dakki, A. & Millán, A. 2020a. Longitudinal distribution of macroinvertebrate in a very wet North African basin: Oued Melloulou (Morocco). International Journal of Limnology, 56(17): 1-11. https://doi.org/10.1051/limn/2020016
Taybi, A. F., Mabrouki, Y., Chavanon, G. & Millán, A. 2020b. The alien boatman Trichocorixa verticalis verticalis (Hemiptera: Corixidae) is expanding in Morocco. Limnetica, 39(1): 49-59.
Taybi, A. F., Mabrouki, Y. & Doadrio, I. 2020c. The occurrence, distribution and biology of invasive fish species in fresh and brackish water bodies of NE Morocco. Arxius de Miscellania Zoologica, 18: 59-73. https://doi.org/10.32800/amz.2020.18.0059
Taybi, A. F., Mabrouki, Y., Berrahou, A. & Legssyer, B. 2020d. Spatio-temporal typology of the physico-chemical parameters of the Moulouya and its main tributaries. African Journal of Aquatic Sciences, 45(4): 431-441. https://doi.org/10.2989/16085914.2020.1727832
Zaranko, D. T., Farara, D. G. & Thompson, F. G. 1997. Another exotic mollusc in the Laurentian Great Lakes: the New Zealand native Potamopyrgus antipodarum . Canadian Journal of Fisheries and Aquatic Sciences, 54: 809-814. https://doi.org/10.1139/f96-343