J. M. Sánchez Murillo1*, M. González2, M. M. Martínez Díaz1, A. Reyes Galán1 & P. M. Alarcón-Elbal3

1Parasitology Department, Regional Animal Health Laboratory, Government of Extremadura, Badajoz, Spain

2Sand Fly Research Group, Faculty of Life Sciences, Keele University, UK

3Animal Pathology Department, Veterinary Faculty, University of Zaragoza, Spain




The ceratopogonid Culicoides paradoxalis Ramilo & Delécolle, 2013 is recorded for the first time in Spain based on reliable morphological evidence according to the previous descriptions of other authors. A total of 438 females (349 nulliparous and 89 parous) and a single male were collected with CDC miniature light traps at three different livestock-associated locations in Extremadura Autonomous Community (Spain) in 2014. Most specimens were captured between June and August, suggesting a univoltine pattern for this species extended over summer and early autumn. Although the number of collections of C. paradoxalis is low in comparison with the dominant species, the occurrence of this species in monitoring surveillance programs should deserve specific attention in order to estimate the accurate ratio of potential vectors unmistakably. Interesting information about the period of flight and illustrated morphological features are presented for C. paradoxalis in the current paper.

Key words: Biting midges; Diptera; Ceratopogonidae; Culicoides paradoxalis; new record; Extremadura; Spain.



Primera cita de Culicoides paradoxalis Ramilo & Delécolle, 2013 (Diptera, Ceratopogonidae) en España

Se cita por primera vez en España el ceratopogónido Culicoides paradoxalis Ramilo & Delécolle, 2013, basándose en evidencias morfológicas de acuerdo a las descripciones previas de otros autores. Un total de 438 hembras (349 nulíparas y 89 paras) y un macho se recolectaron con minitrampas de luz CDC en tres localidades ganaderas en la Comunidad Autónoma de Extremadura (España) en 2014. La mayor parte de los especímenes fueron capturados entre junio y agosto, mostrando un único período de vuelo que se extendió durante todo el verano y principios del otoño. Aunque el número de capturas de C. paradoxalis es reducido en comparación con los Culicoides dominantes, la aparición de esta nueva especie merece especial atención en los programas de vigilancia entomológica con el fin de estimar inequívocamente la proporción exacta de vectores potenciales. Se presenta en este artículo información de interés sobre el período de vuelo así como fotografías de las características morfológicas de C. paradoxalis.

Palabras clave:  jejenes; Diptera; Ceratopogonidae; Culicoides paradoxalis; nueva cita; Extremadura; España.


Recibido/Received: 11/05/2015; Aceptado/Accepted: 14/10/2015; Publicado en línea/Published online: 18/11/2015

Cómo citar este artículo/Citation: Sánchez Murillo, J. M., González, M., Martínez Díaz, M. M., Reyes Galán, A. & Alarcón-Elbal, P. M., 2015. First record of Culicoides paradoxalis Ramilo & Delécolle, 2013 (Diptera, Ceratopogonidae) in Spain. Graellsia, 71(2): e033.

Copyright: © 2015 SAM y CSIC. Salvo indicación contraria, todos los contenidos de la edición electrónica de Graellsia se distribuyen bajo licencia de uso y distribución Creative Commons Reconocimiento no Comercial 3.0. España (cc-by-nc).




Culicoides Latreille, 1809 biting midges (Diptera, Ceratopogonidae) cause a significant biting nuisance to livestock and humans and are the biological vectors of a wide range of internationally important pathogens of both veterinary and medical importance (Harrup et al., 2015). Moreover, certain species have become notorious for this activity because of their vast population density and persistent biting attacks, shaping public perception of the genus in many regions including northern Europe (Carpenter et al., 2013). In Spain, outbreaks of African horse sickness (AHS) (1966, 1987-1990), bluetongue disease (1956-1960, 2000-today) and more recently Schmallenberg virus (SBV) (2012) have led to a substantial economic damage into the livestock industry in past decades (Pérez de Diego et al., 2014), with mortality, loss of production, trade restrictions and expensive surveillance and vaccination programs.

Since the first studies made by Strobl (1900) until today, there have been many contributions to the knowledge of these insects in our country. However, there was a turning point during the eighties, at which studies begun to be focused on the vectorial role (Mellor et al., 1983), leaving aside the purely faunal aspect of the past. Undoubtedly, the great veterinarian interest of Culicoides regarding the transmission of arbovirosis with an impact on livestock is the main reason why knowledge of these arthropods has advanced so much in recent years. The arrival of bluetongue virus (BTV) outbreaks in the new century contributed to an increased number of studies, and some incorporated the use of molecular techniques for the identification of certain closely related species (Ventura et al., 2005). To date, there are 81 species of Culicoides reported in Spain, divided in 9 subgenera, a miscellaneous group and a nomen dubium (Alarcón-Elbal & Lucientes, 2012). Thanks to this new finding the number of species rises to 82 and 28 in Spain and the Autonomous Community of Extremadura respectively (Sánchez Murillo et al., 2013).

Adult Culicoides are notable for their characteristic wing pigmentation pattern and distribution of wing macrotrichia, which can be used in most species as the main diagnostic features (Rawlings, 1996; Mathieu et al., 2012). Although the study of wing pattern is indeed the main tool in the taxonomy of the genus, identification based on morphological features is sometimes difficult because several cryptic species and species complexes are present (Pagès et al., 2009). In the particular case of subgenus Culicoides, taxonomy is still confused and observation of distinct intraspecific morphological variation has led to record of morphological cryptic diversity (Meiswinkel et al., 2004; Gomulski et al., 2006; Pagès et al., 2009; Muñoz-Muñoz et al., 2011). Therefore, the identification of these cryptic specimens to species level, or identification of other species, requires more detailed morphological study or even the use of molecular techniques (Nolan et al., 2007). Knowledge of which species could act as disease vectors, as well as their correct identification, remains essential to assess the real risk for disease transmission into disease-free areas (Augot et al., 2013).

In this contribution, we report the species Culicoides paradoxalis Ramilo & Delécolle, 2013, a new species recently described in France and Portugal (Ramilo et al., 2013), for the first time in Spain. At different localities, authors have collected significant numbers of C. paradoxalis specimens, which are morphologically close to Culicoides lupicaris and Culicoides newsteadi, but might be separated based on marked morphological observations. This work has as main objectives a) facilitate the reliable identification of C. paradoxalis based on morphological features observable under stereomicroscope (40x magnification) and b) to improve the knowledge of this species in terms of flight activity and gonotrophic status.

Material and methodsTOP

The Autonomous Community of Extremadura has been one of the regions in Spain most severely affected by bluetongue epidemics (Pascual-Linaza et al., 2014). Framed within a national surveillance program for BTV in Extremadura, CDC miniature light traps (Model 512; John W. Hock Company, Gainesville, Florida, USA) were used to capture adult Culicoides during 2014 in previously selected farms. A total of four locations (Alcollarín, Valencia de la Torres, Membrío and Villanueva del Fresno) were studied for Culicoides collection in the two provinces of Extremadura (mid-west, Spain). Only three locations were positive in capturing C. paradoxalis (Fig. 1A & 1B). Specimens of Culicoides were collected in a reusable plastic jar suspended below the fan of the trap, half-filled with water/ethanol (50%) and 1,2-propanodiol (50%) as an odorless collecting liquid. Light traps suspended near livestock farms were left overnight (set at dusk and retrieved at dawn), once a week. Adults were preserved in ethanol and subsequently cleaned, dissected and mounted on microscope glass slides using Hoyer’s medium (50 ml of distilled water, 30 g of gum Arabic, 200 g chloral hydrate and 20 ml of glycerin) following the techniques described by González & Goldarazena (2011). Morphological identification was performed following the descriptions of Ramilo et al. (2013). Taxonomic features were photographed with a compound microscope Nikon Eclipse 80i coupled to a Canon Power Shot S-50 camera.

Fig. 1.— Study area, A) Autonomous Community of Extremadura and, B) sampling sites with presence of Culicoides paradoxalis. Data about locations are also added in the table included: UTM coordinates, height above sea level and detailed number of catches.
Fig. 1.— Área de estudio, donde A) Comunidad Autónoma de Extremadura y, B) puntos de muestreo con presencia de Culicoides paradoxalis. Se proporciona información sobre las localizaciones en la tabla incluida: coordenadas UTM, altura sobre el nivel del mar y número detallado de capturas.


Results and discussionTOP

A total of 438 females and a single male were collected and voucher specimens were stored in the arthropods collection of the Parasitology Department, Regional Animal Health Laboratory of Extremadura (Spain).

In order to facilitate a quick identification of C. paradoxalis without needing to prepare slide-mounted specimens, authors suggest three anatomical characteristics which are species-specific for C. paradoxalis (Fig. 2A) to be distinguished from other sibling species of Culicoides subgenus, a) based initially on their unique wing pattern (Ramilo et al., 2013). The pigmentation of C. paradoxalis wing covers a large area of the wing (Fig. 2B) in comparison to morphologically related species (C. lupicaris and C. newsteadi). Anal cell and central part of the wing (medial cells) are quite covered by pigmentation, characteristics that usually occur in some members of subgenus Oecacta (e.g. Culicoides cataneii). Other features are required for a clear separation from C. lupicaris and C. newsteadi, such as b) absence of spine on the fourth tarsomere of mid legs (Fig. 2C), and c) sensory pits (clavate organs) of third segment of palp (Fig. 2D). As Ramilo et al. (2013) illustrated, the third segment of palpus shows a unique large, moderately deep depression with limited borders, which is markedly different from C. newsteadi and C. lupicaris.

Fig. 2.Culicoides paradoxalis, A) adult female, B) female wing pattern, C) tarsomeres 3 (t3), 4 (t4) and 5 (t5) of mid leg, arrows denote the spines, D) mouth parts and palpus, arrow denotes sensorial depression, E) eyes, F) antennal flagellomeres in female: 1 (f1), 2 (f2) and in male antennae: 12 (f12) and 13 (f13), arrows denote detail of sensilla coeloconica, G) female genitalia and, H) male genitalia.
Fig. 2.Culicoides paradoxalis, donde A) hembra adulta, B) patrón alar femenino, C) tarsómeros 3 (t3), 4 (t4) y 5 (t5) de la pata medial, donde las flechas indican las espinas, D) piezas bucales y palpos, la flecha indicando la depresión sensorial, E) ojos, F) flagelómeros antenales de hembra: 1 (f1), 2 (f2) y de macho (f13), donde las flechas indican las sensilas celocónicas, G) genitalia femenina y, H) genitalia masculina.


Later species having individual depressions, giving an appearance of irregular borders that corresponds to small groups of shadow sensory pits. There are other additional anatomical features that might be diagnostic. However, they are quite similar across other species of the subgenus. Eyes contiguously joined for a short distance (1-2 facets), a characteristic with high intraspecific variation across specimens (Fig. 2E). Four sensilla coeloconica on flagellomere 1 were observed in most of the specimens studied (Fig. 2F). Female genitalia have two functional pyriform spermathecae, subequal with a small neck, plus one rudimentary spermatheca with digital shape (Fig. 2G).

Males are typically rare in field collections (González, 2014), and their identification is usually based on genitalia supported by wing pattern. A single male of this species was collected with genitalia characteristics compatible with C. paradoxalis (Fig. 2H), as Ramilo et al. (2013) pointed out. Additionally, sensilla coeloconica distribution differs between species: C. paradoxalis has sensilla coeloconica on flagellomeres 1, 12 and 13 (Fig. 2F); C. newsteadi and C. lupicaris on flagellomeres 1, 11-13. The presence of sensilla coeloconica on flagellomere 11 is polymorphic for C. newsteadi and C. lupicaris (Delécolle, 1985).

Regarding seasonal collections, most European species produce between one generation (univoltine) and several generations annually (multivoltine) (Sarto i Monteys & Saiz-Ardanaz, 2003; Miranda et al., 2003; González et al., 2013a, 2013b). Seasonal dynamics of Culicoides are determined by climatic factors, mainly rainfall and temperature, depending on each species, but also by chemical characteristics of breeding sites (Uslu & Dik, 2010; Venail et al., 2012). Culicoides paradoxalis displayed a high peak of activity with maximum abundance in July and declined during early autumn (Fig. 3). This suggests a univoltine pattern for this species in contrast to C. lupicaris, which is a bivoltine species with peak activity from May to August and from October to November in the Basque Country region (González et al., 2013a). These seasonal dynamics have also been observed for C. pulicaris in Sardinia (Foxi et al., 2011) and the Basque Country (González, 2014), where the species shows a first generational peak (late April/early May), on average larger than the second one (late summer/early autumn). In Extremadura, in contrast, C. pulicaris shows a single peak of activity in June and July, according to current and historical data (Sánchez Murillo et al., 2011).

Fig. 3.— Annual flight activity of Culicoides paradoxalis in Extremadura. Bars correspond to total captures gathered monthly in the three sampling sites over 2014 and black star represents the single male collected.
Fig. 3.— Actividad anual de vuelo de Culicoides paradoxalis en Extremadura. Las barras corresponden con las capturas totales mensuales en los tres puntos de muestreo durante 2014 y la estrella representa el único macho capturado.


Gonotrophic status examination revealed that 74,5% were nulliparous and 25,5% parous, with no specimens belonging to gravid or blood-engorged stages. The high number of nulliparous females is characteristic of the summer season when more midges emerge (Lysyk, 2007). The estimation of the physiological stages in a population is important for various reasons, particularly because the determination of the parous gonotrophic stage in epidemiological studies serves to give an idea of the potential capacity of these midges for transmitting virus (EFSA, 2008) as well as an indicator of the population age structure (Mullens & Schmidtmann, 1982).

Culicoides species of subgenus Avaritia (Culicoides obsoletus, Culicoides scoticus, Culicoides imicola, Culicoides chiopterus and Culicoides dewulfi) are thought to be the primary vectors of BTV and SBV in the Mediterranean region, based on abundance and host preference, vector competence studies, and isolation or detection of virus in field-collected midges (see Garros et al., 2014). Similarly, species of subgenus Culicoides are implicated as vectors of BTV (Caracappa et al., 2003; Vanbinst et al., 2009; Romón et al., 2012) and SBV (De Regee et al., 2012; Elbers et al., 2013; Balenghien et al., 2014). In Europe, more recently, some members of subgenus Culicoides are increasingly being implicated as suspected vectors, such as Culicoides punctatus (Larska et al., 2013) and Culicoides nubeculosus (Balenghien et al., 2014), while C. imicola is considered to be the main vector of BTV and AHS in Spain (Calvete et al., 2008).

Considering that C. paradoxalis is a member of the pulicaris group, closely related to species that play a role in BTV and SBV, their accurate identification to species level is crucial in epidemiological investigations, as great differences in vectorial capacity are found even between these species. However, morphological identification of Culicoides is considered challenging, requiring significant expertise and is restricted to relatively few entomologists in Europe (Koenraadt et al., 2014). Unfortunately, due to the large number of samples that taxonomists and specialists have to face daily, this species has most probably been notoriously overlooked in field-based studies, because of its resemblance to other members of subgenus Culicoides. Re-examination of stored specimens in preparations and/or those preserved in alcohol could provide more details about its presence in other regions of Spain.



Alarcón-Elbal, P. M. & Lucientes, J., 2012. Actualización del catálogo de Culicoides Latreille, 1809 (Diptera, Ceratopogonidae) de España. Graellsia, 68(2): 353-362.
Augot, D., Ninio, C., Akhoundi, M., Lehrter, V., Couloux, A., Jouet, D. & Depaquit, J., 2013. Characterization of two cryptic species, Culicoides stigma and C. parroti (Diptera: Ceratopogonidae), based on barcode regions and morphology. Journal of Vector Ecology, 38(2): 260-265.
Balenghien, T., Pagès, N., Goffredo, M., Carpenter, S., Augot, D., Jacquier, E., Talavera, S., Monaco, F., Depaquit, J., Grillet, C., Pujols, J., Satta, G., Kasbari, M., Setier-Rio, M. L., Izzo, F., Alkan, C., Delécolle, J. C., Quaglia, M., Charrel, R., Polci, A., Bréard, E., Federici, V., Cêtre-Sossah, C. & Garros, C., 2014. The emergence of Schmallenberg virus across Culicoides communities and ecosystems in Europe. Preventive Veterinary Medicine, 116(4): 360-369.
Calvete, C., Calvo, J. H., Calavia, R., Miranda, M. A., Borràs, D., Estrada, R., Lucientes, J., Mañuz, B. & Romero, L., 2008. Culicoides species and transmission of bluetongue virus in Spain. Veterinary Record, 162: 255.
Caracappa, S., Torina, A., Guercio, A., Vitale, F., Calabro, A., Purpari, G., Ferrantelli, V., Vitale, M. & Mellor, P. S., 2003. Identification of a novel bluetongue virus vector species of Culicoides in Sicily. Veterinary Record, 153(3): 71-74.
Carpenter, S., Groschup, M. H., Garros, C., Felippe-Bauer, M. L. & Purse, B. V., 2013. Culicoides biting midges, arboviruses and public health in Europe. Antiviral Research, 100(1): 102-113.
De Regge, N., Deblauwe, I., De Deken, R., Vantieghem, P., Madder, M., Geysen, D., Smeets, F., Losson, B., van den Berg, T. & Cay, A. B., 2012. Detection of Schmallenberg virus in different Culicoides spp. by real-time RT-PCR. Transboundary and Emerging Diseases, 59: 471-475.
Delécolle, J. C., 1985. Nouvelle contribution à l’étude systématique et iconographique des espèces du genre Culicoides (Diptera: Ceratopogonidae) du Nord-Est de la France. PhD. Université Louis-Pasteur.
EFSA, 2008. Scientific Opinion of the Panel on Animal Health and Welfare on a request from the European Commission (DG SANCO) on Bluetongue. The EFSA Journal, 735: 1-70.
Elbers, A. R. W., Meiswinkel, R., van Weezep, E., Sloet van Oldruitenborgh-Oosterbaan, M. M. & Kooi, E. A., 2013. Schmallenberg virus in Culicoides spp. biting midges, the Netherlands, 2011. Emerging Infectious Diseases, 19: 106-109.
Foxi, C., Pinna, M., Sarto i Monteys, V. & Delrio, G., 2011. An updated checklist of the Culicoides Latreille (Diptera: Ceratopogonidae) of Sardinia (Italy), and seasonality in proven and potential vectors of Bluetongue virus (BTV). Proceedings of the Entomological Society of Washington, 113(4): 403-416.
Garros, C., Balenghien, T., Carpenter, S., Delécolle, J. C., Meiswinkel, R., Pédarrieu, A., Rakotoarivony, I., Gardès, L., Golding, N., Barber, J., Miranda, M., Borràs, D., Goffredo, M., Monaco, F., Pagès, N., Sghaier, S., Hammami, S., Calvo, J. H., Lucientes, J., Geysen, D., De Deken, G., Sarto i Monteys, V., Schwenkenbecher, J., Kampen, H., Hoffmann, B., Lehmann, K., Werner, D., Baldet, T., Lancelot, R. & Cêtre-Sossah, C., 2014. Towards the PCR-based identification of Palaearctic Culicoides biting midges (Diptera: Ceratopogonidae): results from an international ring trial targeting four species of the subgenus Avaritia. Parasites & Vectors, 7: 223.
Gomulski, L. M., Meiswinkel, R., Delécolle, J. C., Goffredo, M. & Gasperi, G., 2006. Phylogeny of the subgenus Culicoides and related species in Italy, inferred from internal transcribed spacer 2 ribosomal DNA sequences. Medical and Veterinary Entomology, 20: 229-238.
González, M., 2014. El género Culicoides (Diptera: Ceratopogonidae) en el País Vasco, norte de España. PhD Thesis. Universidad del País Vasco. 327 pp.
González, M., Baldet, T., Delécolle, J. C., López, S., Romón, P. & Goldarazena, A., 2013a. Monitoring of Culicoides Latreille (Diptera: Ceratopogonidae) after BTV outbreaks, in sheep farms and natural habitats from the Basque Country (Northern Spain). Proceedings of the Entomological Society of Washington, 115(1): 48-69.
González, M. & Goldarazena, A., 2011. El género Culicoides en el País Vasco: guía práctica para su identificación y control. Servicio Central de Publicaciones del Gobierno Vasco. 247 pp.
González, M., López, L., Mullens, B. A., Baldet, T. & Goldarazena, A., 2013b. A survey of Culicoides developmental sites on a farm in northern Spain, with a brief review of immature habitats of European species. Veterinary Parasitology, 191: 81-93.
Harrup, L. E., Bellis, G. A., Balenghien, T. & Garros, C., 2015. Culicoides Latreille (Diptera: Ceratopogonidae) taxonomy: Current challenges and future directions. Infection, Genetics and Evolution, 30: 249-266.
Koenraadt, C. J. M., Balenghien, T., Carpenter, S., Ducheyne, E., Elbers, A. R. W., Fife, M., Garros, C., Ibáñez-Justicia, A., Kampen, H., Kormelink, R. J. M., Losson, B., van der Poel, W. H. M., De Regge, N., van Rijn, P. A., Sanders, C., Schaffner, F., Sloet van Oldruitenborgh-Oosterbaan, M. M., Takken, W., Werner, D. & Seelig, F., 2014. Bluetongue, Schmallenberg - what is next? Culicoides-borne viral diseases in the 21st Century. BMC Veterinary Research, 10: 77.
Larska, M., Lechowski, L., Grochowska, M. & Zmudzinski, J. F., 2013. Detection of Schmallenberg virus in nulliparous Culicoides obsoletus/scoticus complex and C. punctatus- the possibility of transovarial virus transmission in the midge population and of a new vector. Veterinary Microbiology, 166: 467-473.
Lysyk, T.J., 2007. Seasonal Abundance, Parity, and Survival of Adult Culicoides sonorensis (Diptera: Ceratopogonidae) in Southern Alberta, Canada. Journal of Medical Entomology, 44(6): 959-969.;2
Mathieu, B., Cêtre-Sossah, C., Garros, C., Chavernac, D., Balenghien, T., Carpenter, S., Setier-Rio, M. L., Vignes-Lebbe, R., Ung, V., Candolfi, E. & Delécolle, J.-C., 2012. Development and validation of IIKC: an interactive identification key for Culicoides (Diptera: Ceratopogonidae) females from the Western Palaearctic region. Parasites & Vectors, 5: 137.
Meiswinkel, R., Gomulski, L. M., Delécolle, J.-C., Goffredo, M. & Gasperi, G., 2004. The taxonomy of Culicoides vector complexes - unfinished business. Veterinaria Italiana, 40(3): 151-159.
Mellor, P. S., Boorman, J. P. T., Wilkinson, P. J. & Martínez-Gómez, F., 1983. Potential vectors of bluetongue and African horse sickness viruses in Spain. Veterinary Record, 112: 229-230.
Miranda, M. A., Borràs, D., Rincón, C. & Alemany, A., 2003. Presence of Culicoides imicola and Culicoides obsoletus in the Balearic islands. Medical and Veterinary Entomology, 17: 1-4.
Mullens, B. A. & Schmidtmann, E. T., 1982. The gonotrophic cycle of Culicoides variipennis (Diptera: Ceratopogonidae) and its implications in age-grading field populations in New York State, USA. Journal of Medical Entomology, 193: 340-349.
Muñoz-Muñoz, F., Talavera, S. & Pagès, N., 2011. Geometric morphometrics of the wing in the subgenus Culicoides (Diptera: Ceratopogonidae): from practical implications to evolutionary interpretations. Journal of Medical Entomology, 48: 129-139.
Nolan, D. V., Carpenter, S., Barber, J., Mellor, P. S., Dallas, J. F., Mordue (Luntz), A. J. & Piertney, S. B., 2007. Rapid diagnostic PCR assays for members of the Culicoides obsoletus and Culicoides pulicaris species complexes, implicated vectors of bluetongue virus in Europe. Veterinary Microbiology, 124: 82-94.
Pagès, N., Muñoz-Muñoz, F., Talavera, S., Sarto, V., Lorca, C. & Núñez, J. I., 2009. Identification of cryptic species of Culicoides (Diptera: Ceratopogonidae) in the subgenus Culicoides and development of species-specific PCR assays based on barcode regions. Veterinary Parasitology, 165: 298-310.
Pascual-Linaza, A. V., Martínez-López, B., Pfeiffer, D. U., Moreno, J. C., Sanz, C. & Sánchez-Vizcaíno, J. M., 2014. Evaluation of the spatial and temporal distribution of and risk factors for Bluetongue serotype 1 epidemics in sheep Extremadura (Spain), 2007-2011. Preventive and Veterinary Medicine, 116(3): 279-295.
Pérez de Diego, A. C., Sánchez-Cordón, P. J. & Sánchez-Vizcaíno, J. M., 2014. Bluetongue in Spain: From the First Outbreak to 2012. Transboundary and Emerging Diseases, 61: e1-e11.
Ramilo, D., Garros, C., Mathieu, B., Benedet, C., Allène, X., Silva, E., Alexandre-Pires, G., Pereira da Fonseca, I., Carpenter, S., Rádrová, J. & Delécolle, J.-C., 2013. Description of Culicoides paradoxalis sp. nov. from France and Portugal (Diptera: Ceratopogonidae). Zootaxa, 3745(2): 243-256.
Rawlings, P., 1996. A key, based on wing patterns of biting midges (Genus Culicoides Latreille-Diptera: Ceratopogonidae) in the Iberian peninsula, for use in epidemiological studies. Graellsia, 52: 52-71.
Romón, P., Higuera, M., Delécolle, J. C., Baldet, T., Aduriz, G. & Goldarazena, A., 2012. Phenology and attraction of potential Culicoides vectors of bluetongue virus in Basque Country (northern Spain). Veterinary Parasitology, 186: 415-424.
Sánchez Murillo, J. M., González López, M., Alarcón-Elbal, P. M., Sanz Jiménez, C., Delacour Estrella, S., Ruiz Arrondo, I., Pinal, R., Galán Caballero, L., Estrada Peña, R. & Lucientes Curdi, J., 2011. Distribución estacional de Culicoides imicola, Kieffer, 1913 (Diptera, Ceratopogonidae), Complejo Culicoides obsoletus (Meigen, 1818) y Complejo Culicoides pulicaris (Linné, 1758) en Extremadura (España). Laboratorio Veterinario Avedila, 56: 3-7.
Sánchez Murillo, J. M., Martínez Díaz, M. M., González López, M., Reyes Galán, A. & Alarcón-Elbal, P. M., 2013. Primer registro de Culicoides lupicaris Downes & Kattle, 1952 (Diptera, Ceratopogonidae) para Extremadura (España). Boletín de la Sociedad Entomológica Aragonesa, 53: 346-348.
Sarto i Monteys, V. & Saiz-Ardanaz, M., 2003. Culicoides midges in Catalonia (Spain), with special reference to likely bluetongue virus vectors. Medical and Veterinary Entomology, 17: 288-293.
Strobl, P. G., 1900. Spanische Dipteren, XI. Theil. Wiener Entomologische Zeitung, 19: 169-174.
Uslu, U. & Dik, B., 2010. Chemical characteristics of breeding sites of Culicoides species (Diptera: Ceratopogonidae). Veterinary Parasitology, 169(1-2): 178-184.
Vanbinst, T., Vandenbussche, F., Vandemeulebroucke, E., De Leeuw, I., Deblauwe, I., De Deken, G., Madder, M., Haubruge, E., Losson, B. & De Clercq, K., 2009. Bluetongue virus detection by real-time RT-PCR in Culicoides captured during the 2006 epizootic in Belgium and development of an internal control. Transboundary and Emerging Diseases, 56: 170-177.
Venail, R., Balenghien, T., Guis, H., Tran, A., Setier-Rio, M.-L., Delécolle, J.-C., Mathieu, B., Cêtre-Sossah, C., Martinez, D., Languille, J., Baldet, T. & Garros, C., 2012. Assessing diversity and abundance of vector populations at a national scale: example of Culicoides surveillance in France after bluetongue virus emergence. In: Mehlhorn, H. (ed.). Arthropods as Vectors of Emerging Diseases. Springer. Heidelberg: 77-102.
Ventura, D., Pagès, N. & Sarto, V., 2005. Citas nuevas e interesantes de Culicoides Latreille, 1809 para Cataluña y la Península Ibérica (Diptera, Nematocera, Ceratopogonidae). Boletín de la Asociación Española de Entomología, 29: 75-86.