NOTAS / NOTES

First record of Rosalia alpina (Linnaeus 1758) (Coleoptera, Cerambycidae) in Prunus avium (L.) (Rosaceae)

Alberto Castro-Gil1,*, Leticia Martínez de Murguía-Fernández1,2 & Francisco Molino-Olmedo3

1Department of Entomology, Aranzadi Society of Sciences, Zorroagagaina 11, 20014 Donostia-San Sebastián, Gipuzkoa (Spain). ORCID iD: http://orcid.org/0000-0001-8886-795X

2ORCID iD: http://orcid.org/0000-0002-4624-6204

3La Zambra 8, 23100 Mancha Real, Jaén (Spain). ORCID iD: http://orcid.org/0000-0002-8658-2069

*Corresponding author: adecastro@aranzadi.eus

 

ABSTRACT

The use of Prunus avium (L.) as habitat of the legally protected longicorn Rosalia alpina (Linnaeus, 1758) is recorded for the first time. The observations took place in a dying cherry tree located in a garden of a countryside land belonging to the municipality of Asteasu (Gipuzkoa). The presence of adults mating and looking for oviposition sites, exit holes, and one larva inside a dead branch suggest that R. alpina is able to complete its life cycle in the cherry tree. Two other saproxylic species, Cerambyx scopolii Fuessly, 1775 and Ampedus pomonae (Stephens, 1820), were found inside dead branches. In the region of the study area, R. alpina had only been previously recorded on Fagus sylvatica L. trees. Therefore, further research is suggested to determine the importance of other tree species like alternative habitat and their role in the conservation of R. alpina.

Key words: Cerambycidae; Cherry tree; Coleoptera; Dead wood; Saproxylics.

 

RESUMEN

Primer registro de Rosalia alpina (Linnaeus 1758) (Coleoptera, Cerambycidae) en Prunus avium (L.) (Rosaceae)

El empleo de Prunus avium (L.) como hábitat para el longicornio legalmente protegido Rosalia alpina (Linnaeus, 1758) se registra por primera vez. Las observaciones tuvieron lugar en un cerezo moribundo localizado en un jardín en un entorno rural perteneciente al término municipal de Asteasu (Gipuzkoa). La presencia de adultos apareándose y buscando lugares para ovopositar, de orificios de salida y de una larva dentro de una rama muerta, sugieren que la especie es capaz de completar su ciclo biológico en el cerezo. Dentro de las ramas muertas se encontraron otras dos especies de saproxílicos: Cerambyx scopolii Fuessly, 1775 and Ampedus pomonae (Stephens, 1820). En la región del área de estudio, R. alpina sólo había sido previamente citada en ejemplares de Fagus sylvatica L. Por tanto, se recomiendan futuras investigaciones para determinar la importancia de otras especies de árboles como hábitat alternativo y su papel para la conservación de R. alpina.

Palabras clave: Cerambycidae; Cerezo; Coleoptera; Madera muerta; Saproxílicos.

 

Recibido/Received: 28/04/2017; Aceptado/Accepted: 5/09/2017; Publicado en línea/Published online: 20/10/2017

Cómo citar este artículo/Citation: Castro-Gil, A., Martínez de Murguía-Fernández, L. & Molino-Olmedo, F. 2017. First record of Rosalia alpina (Linnaeus 1758) (Coleoptera, Cerambycidae) in Prunus avium (L.) (Rosaceae). Graellsia, 73(2): e061. http://dx.doi.org/10.3989/graellsia.2017.v73.182

Copyright: © 2017 SAM y CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-by) Spain 3.0 License.


 

CONTENT

The conservation of endangered insect species requires knowledge about their habitat (New, 2009; Samways et al., 2010). The saproxylic beetle Rosalia alpina (Linnaeus 1758) is legally protected in Europe (Council of European Communities, 1992) because it shows an overall decline of its continental distribution and population through the last century, despite of the recovery showed by some populations at regional scale (Luce, 1996; Lachat et al., 2013; Michalcewicz & Ciach, 2015). Rosalia alpina colonizes dead wood of dying and dead trees on open and sunlit conditions (Duelli & Wermelinger, 2005; Russo et al., 2010; Castro & Fernández, 2016). The aforementioned population trends are mainly linked to the availability of this particular habitat (Luce, 1996; Russo et al., 2010; Lachat et al., 2013). There are observations of individuals of R. alpina in many tree taxa (Čížek et al., 2009). However, the species seems to prefer the common beech (Fagus sylvatica L.) and beech forests, and successful colonizations have been confirmed at least in another nine broadleaf species (Čížek et al., 2009; Mazzei et al., 2013). Furthermore, recent research suggests the importance of trees as Acer pseudoplatanus L., Ulmus glabra Huds., and Fraxinus excelsior L. like habitat of R. alpina (Binner & Bussler, 2006; Michalcewicz et al., 2011; Michalcewicz & Ciach, 2012; Ciach & Michalcewicz, 2014). To our knowledge, this contribution shows the first observations of R. alpina in the genus Prunus.

All observations of R. alpina were done on a dying cherry tree, Prunus avium (L.), located in a plain surface of a valley bottom with the following UTM coordinates (WGS 84 Datum) and altitude: 30TWN7210482740 and 134 m. This location is included in the municipality of Asteasu (province of Gipuzkoa, the Autonomous Community of the Basque Country, Spain) (Fig. 1). According to the nearest weather station (Billabona, 172 m a. s. l.), annual values of rainfall and average temperature are 1551 mm and 13.6°C, respectively (Loidi et al., 2011). The cherry tree is in a garden of ornamental and fruit trees (owned by L. Martínez de Murguía), surrounded by one stand of temperate mixed forest on the south, and a countryside landscape on the north. The cherry tree has three main trunks from the base (Fig. 2), all partially stripped, with bracket fungi, and with the following diameters at breast height and aspects: 32 cm and N, 30 cm and SE, and 28 cm and SW. The tree died on 2016, and all branches above 4 m were cut on 19 March for safety reasons. On this date, cut branches were broken to check for presence of larvae, and exit holes assignable to R. alpina were counted. Exit holes showed the typical shapes and sizes described in beeches (Duelli & Wermelinger, 2005; Ciach & Michalcewicz, 2013), that also matched with those observed in Acer pseudoplatanus L. (Binner & Bussler, 2006; Michalcewicz et al., 2013), and Ulmus sp. (Čížek et al., 2009).

Fig. 1.— Location of the observations of Rosalia alpina (black square). The frame delimits 10 x 10 km UTM square grid.
Fig. 1.— Localización de las observaciones de Rosalia alpina (cuadrado negro). El marco delimita el enrejado de cuadrículas UTM de 10 x 10 km.

 

Fig. 2.— Observations of Rosalia alpina on the cherry tree. From upper left to bottom right: view from the south, male on the main trunk, female exploring the cracks of a cut branch, and two individuals mating on a branch (Photos: L. Martínez de Murguía).
Fig. 2.— Observaciones de R. alpina en el cerezo. De izquierda a derecha y de arriba abajo: vista desde el sur, macho en el tronco principal, hembra explorando las grietas de una rama cortada y dos individuos apareándose sobre una rama (Fotos: L. Martínez de Murguía).

 

Individuals of R. alpina were photographed and distinguished among them by the pattern of their elytra (Luce, 1996). In this way, two males and one female were observed on 28 July 2013. One male was in a resting position and the other two individuals were mating (Fig. 2). On 17 July 2016 another three individuals were observed showing the same behavior. However, in this case, after separating from the male, the female started to explore the cracks of the stripped part of a cut branch looking for a place to lay eggs (Fig. 2). One last male was seen on 10 August 2016. Additionally, a larva of 20 mm in length was found inside a branch (Fig. 3) around 15 cm in diameter. This means an important development and growth of the larva inside the tree, considering that the eggs of the species average 3.6 mm (Ciach & Michalcewicz, 2009). The SW, SE, and N trunks showed 18, 17, and one exit holes assignable to R. alpina (Fig. 3), respectively. One adult male of the Cerambycidae Cerambyx scopolii Fuessly, 1775 (in a pupal chamber), and one larva of the Elateridae Ampedus pomonae (Stephens, 1820) were also found inside the cut branches. Larvae were stored and preserved in the collection of the Aranzadi Society of Sciences. Larvae were identified with the help of the works of Švácha & Danilevski (1987, 1988, 1989) for Cerambycidae, and Klausnitzer (1994) for Elateridae. C. scopolii was determined following the works of Bahillo & Iturrondobeitia (1996), and Vives (2000).

Fig. 3.— Exit hole observed on the SE trunk, and the larva extracted from one of the cut branches (Photos: L. Martínez de Murguía).
Fig. 3.— Orificio de salida observado en el tronco SE y la larva extraída de una de las ramas cortadas (Fotos: L. Martínez de Murguía).

 

Regarding to these last two species, C. scopolii had already found in wood of P. avium close to the study area (Bahillo & Iturrondobeitia, 1996), while to our knowledge A. pomonae is recorded in the genus Prunus for the first time. Ampedus pomonae has been found in willows, poplars, birches, and pubescent oaks (Chatenet, 2000; Sautière & Calmont, 2014). According to the last authors, more information about the ecology of this beetle species, such as the one presented here, is needed.

So far, in the region of the study area (Basque Country) all R. alpina records of larvae or adults in trees with exit holes have been associated to wood of F. sylvatica (Bahillo & Iturrondobeitia, 1996; Martínez de Murguía et al., 2007; Castro et al., 2012). However, this contribution shows that in the absence of beeches, the species colonizes other tree species if other habitat preferences, such as thick trunks (Ø > 25 cm) with dry and sun-exposed dead wood (Duelli & Wermelinger, 2005; Russo et al., 2010; Castro et al., 2012; Castro & Fernández, 2016), are present. No trees meeting these habitat conditions were observed in the surroundings of the study area. The nearest records of R. alpina are from the Site of Community Interest of Hernio-Gazume (Castro et al., 2012), and located more than 2 km far away, exceeding the maximum dispersal distance known (=1628 m) of the species (Drag et al., 2011). However, recent genetic analysis suggests that R. alpina could have stronger dispersal abilities (Drag et al., 2015), allowing repeated colonizations of lowlands with less and more isolated available habitat (as it would be the case of the study area) from nearby mountains, where most part of the population would concentrate (case of Hernio-Gazume). Records of R. alpina in valley bottoms and lowlands close to the study area (Vega, 1981; Ugarte et al., 2002; Pagola, 2007; Ugarte & Salgueira, 2009–2010) could reflect this kind of dispersal movements. Rosalia alpina colonizes successfully other deciduous tree species than the beech in lowlands of central Europe (Čížek et al., 2009). In Spain the recommended measures of conservation of R. alpina are focused on beech woodlands, which are considered their preferred habitat (Viñolas & Vives, 2012). However, keeping in mind the presence of important populations in Quercus trees in the east of the country (Viñolas & Vives, 2012) and data from this contribution, it would be advisable to determine the role of other deciduous trees and forests as habitat of the species. If these are shown to be important, it will imply considering to include more woodland types in conservation actions for R. alpina, as habitat protection and enhancement, and design of net of corridors among populations.

 

AcknowledgementsTOP

We thank Juan Ángel Álvarez for cutting and breaking the branches.

 

ReferencesTOP


Bahillo, P. & Iturrondobeitia, J. C., 1996. Cerambícidos (Coleoptera, Cerambycidae) del País Vasco. Cuadernos de Investigación Biológica, 19: 3–244.
Binner, V. & Bussler, H., 2006. Erfassung und Bewertung von Alpenbock-Vorkommen. Naturschutz und Landschaftsplanung, 38: 378–382.
Castro, A. & Fernández, J., 2016. Tree selection by the endangered beetle Rosalia alpina in a lapsed pollard beech forest. Journal of Insect Conservation, 20(2): 201–214. https://doi.org/10.1007/s10841-016-9854-1
Castro, A., Martínez de Murguía, L., Fernández, J., Casis, A. & Molino-Olmedo, F., 2012. Size and quality of wood used by Rosalia alpina (Linnaeus, 1758) (Coleoptera: Cerambycidae) in beech woodlands in Gipuzkoa (northern Spain). Munibe Ciencias naturales, 60: 77–100.
Chatenet, G. du. 2000. Coléopterès phytophages d´Europe. N.A.P. Éditions. Vitry-sur-Seine. 359 pp.
Ciach, M. & Michalcewicz, J., 2009. Egg morphology of Rosalia alpina (Linnaeus, 1758) (Coleoptera: Cerambycidae) from southern Poland. Entomological News, 120(1): 61–64. https://doi.org/10.3157/021.120.0112
Ciach, M. & Michalcewicz, J., 2013. Correlation between selected biometric traits of adult Rosalia alpina (L.) (Coleoptera: Cerambycidae) and size of their exit holes: new perspectives on insect studies? Polish Journal of Ecology, 61(2): 349–355.
Ciach, M. & Michalcewicz, J., 2014. Pastureland copses as habitats for a primeval forest relict: a unique location of the Rosalia longicorn Rosalia alpina (L.) (Coleoptera: Cerambycidae) in the Polish Carpathians. Polish Journal of Entomology, 83(1): 71–77. https://doi.org/10.2478/pjen-2014-0005
Čížek, L., Schaghalamerský, J., Bořucký, J., Hauck, D. & Helešic, J., 2009. Range expansion of an endangered beetle: Alpine Longhorn Rosalia alpina (Coleoptera: Cerambycidae) spreads to the lowlands of Central Europe. Entomologica Fennica, 20: 200–206.
Council of European Communities, 1992. Council Directive 92/43/CEE of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Communities, 35: 7–50.
Drag, L., Hauck, D., Bérces, S., Michalcewicz, J., Jelaska, L.S., Aurenhammer, S. & Čížek, L., 2015. Genetic differentiation of populations of the threatened saproxylic beetle Rosalia longicorn, Rosalia alpina (Coleoptera: Cerambycidae) in Central and South-east Europe. Biological Journal of the Linnean Society, 116(4): 911–925. https://doi.org/10.1111/bij.12624
Drag, L., Hauck, D., Pokluda, P., Zimmermann, K. & Čížek, L., 2011. Demography and dispersal ability of a threatened saproxylic beetle: a mark-recapture study of the Rosalia longicorn (Rosalia alpina). PLoS ONE, 6(6): e21345. https://doi.org/10.1371/journal.pone.0021345
Duelli, P. & Wermelinger, B., 2005. La Rosalie des Alpes (Rosalia alpina). Un cérambycide rare et emblématique. Noticie pour le praticien, 39: 1–8.
Klausnitzer, B., 1994. Die larven der käfer mitteleuropas. 2. Band Myxophaga, Polyphaga Teil. 1. Goecke & Evers. Krefeld. 325 pp.
Lachat, T., Ecker, K. & Duelli, P., 2013. Population trends of Rosalia alpina (L.) in Switzerland: a lasting tournaround? Journal of Insect Conservation, 17(4): 653–662. http://dx.doi.org/10.1007/s10841-013-9549-9
Loidi, J., Biurrun, I., Campos, J. A., García-Mijangos, I. & Herrera, M., 2011. La vegetación de la Comunidad Autónoma del País Vasco. Leyenda del mapa de series de vegetación a escala 1:50.000. Universidad del País Vasco (electronic edition). Available at http://hdl.handle.net/10810/15551
Luce, J. M., 1996. Rosalia alpina (Linnaeus, 1758). In: Van Helsdingen, P. J., Willemse, L. & Speight, M. C. D. (eds). Background information on invertebrates of the Habitats directive and the Bern Convention. Part I – Crustacea, Coleoptera and Lepidoptera. Council of Europe. Series Nature and Environment nº. 79: 70–73.
Martínez de Murguía, L., Castro, A. & Molino-Olmedo, F., 2007. Artrópodos saproxílicos forestales en los parques naturales de Aralar y Aizkorri (Guipúzcoa, España) (Araneae y Coleoptera). Boletín de la SEA, 41: 237–250.
Mazzei, A., Bonacci, T., Gangale, C., Pizzolotto, R. & Brandmayr, P., 2013. Nuovi dati faunistici ed ecologici de Rosalia alpina (Linnaeus, 1758) in Calabria. Quaderno di Studi e Notizie di Storia Naturale della Romagna, 38: 181–190.
Michalcewicz, J., Bodziarczyk, J. & Ciach, M., 2013. Development of the rosalia longicorn Rosalia alpina (L.) in the sycamore maple Acer pseudoplatanus L. – the first report on Poland. Polish Journal of Entomology, 82(1): 19–24. https://doi.org/10.2478/v10200-012-0019-6
Michalcewicz, J. & Ciach, M., 2012. Rosalia longicorn Rosalia alpina (L.) (Coleoptera: Cerambycidae) uses roadside European ash trees Fraxinus excelsior L. – an unexpected habitat of an endangered species. Polish Journal of Entomology, 81(1): 49–56. https://doi.org/10.2478/v10200-011-0063-7
Michalcewicz, J. & Ciach, M., 2015. Current distribution of the Rosalia longicorn Rosalia alpina (Linnaeus, 1758) (Coleoptera: Cerambycidae) in Poland. Polish Journal of Entomology, 84(1): 9–20. https://doi.org/10.1515/pjen-2015-0002
Michalcewicz, J., Ciach, M. & Bodziarczyk, J., 2011. The unknown natural habitat of Rosalia alpina (L.) (Coleoptera: Cerambycidae) and its trophic association with the mountain elm Ulmus glabra in Poland – a change of habitat and host plant. Polish Journal of Entomology, 80 (1): 23–31. https://doi.org/10.2478/v10200-011-0003-6
New, T. R., 2009. Insect Species Conservation. Cambridge University Press. Cambridge & New York. xiv + 256 pp.
Pagola, S., 2007. Detección de las especies de invertebrados de interés comunitario, determinación del estado de sus poblaciones y medidas para su conservación, en el L.I.C. Aiako Harria. Campaña 2006. Technical Report, Diputación Foral de Gipuzkoa, Donostia-San Sebastián. 43 pp. Available at: http://www.lifeaiakoharria.net/datos/documentos/AH_invertebrados%20directiva.pdf
Russo, D., Cistrone, L. & Garonna, A. P., 2010. Habitat selection by the highly endangered long-horned beetle Rosalia alpina in Southern Europe: a multiple spatial scale assessment. Journal of Insect Conservation. https://doi.org/10.1007/s10841-010-9366-3
Samways, M. J., McGeoch, M. A. & New, T. R., 2010. Insect Conservation. A Handbook of Approaches and Methods. Oxford University Press. New York. 464 pp.
Sautière, C. & Calmont, B. 2014. Elateroidea nouveaux ou peu communs du département de l´Ardeche. Bulletin mensuel de la Société Linnéenne de Lyon, 83(7–8): 171–189.
Švácha, P. & Danilevski, M. L., 1987. Cerambycoid larvae of Europe and Europe and Soviet Union (Coleoptera, Cerambycoidea). Part I. Acta Universitatis Carolinae - Biologica, [1986], 31(3–4): 121–284.
Švácha, P. & Danilevski, M. L., 1988. Cerambycoid larvae of Europe and Europe and Soviet Union (Coleoptera, Cerambycoidea). Part II. Acta Universitatis Carolinae – Biologica, [1987], 31 (3–4): 121–284.
Švácha, P. & Danilevski, M. L., 1989. Cerambycoid larvae of Europe and Europe and Soviet Union (Coleoptera, Cerambycoidea). Part III. Acta Universitatis Carolinae - Biologica, [1988], 32 (1–2): 1–205.
Ugarte, I., Pagola, S. & Zabalegui, I. 2002. Estado actual (distribución, biología y conservación) en la Comunidad Autónoma del País Vasco de cuatro coleópteros (Insecta: Coleoptera) incluidos en la Directiva de Hábitats (92/43/CEE) de la Comunidad Económica Europea. Technical Report, Departamento de Ordenación del Territorio y Medio Ambiente, Gobierno Vasco, Vitoria-Gasteiz. 197 pp. Available at: http://www.euskadi.eus/web01-s2ing/es/u95aWar/u95aPintaFicheroServlet?R01HNoPortal=true&idiomaFichero=es&codigoFichero=11&tipoFichero=2&R01HNoPortal=true
Ugarte, I. & Salgueira, F., 2009–2010. Coleópteros (Insecta: Coleoptera) del humedal de Laku (Araba/Alava, Comunidad Autónoma del País Vasco= (Norte de la Península Ibérica). Estudios del Museo de Ciencias Naturales de Álava, 23: 199–214.
Vega, A., 1981. Localidades de Rosalia alpina L., 1798 (Col. Cerambycidae) para la Península Ibérica. Boletín de la Asociación Española de Entomología, 5: 189–190.
Viñolas, A. & Vives, E. 2012. Rosalia alpina. In: VV.AA. Bases ecológicas preliminares para la conservación de las especies de interés comunitario en España: Invertebrados. Ministerio de Agricultura, Alimentación y Medio Ambiente. Madrid. 59 pp.
Vives, E. 2000. Coleoptera, Cerambycidae. In: Fauna Ibérica, vol. 12. Ramos, M. A. et al. (Eds.). Museo de Ciencias Naturales. CSIC. Madrid. 716 pp.



Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista mcnp115@mncn.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es